View More View Less
  • 1 Semmelweis Egyetem, Budapest
  • 2 Országos Onkológiai Intézet, Budapest, Ráth György utca 7–9., 1122
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $1,070.00

Absztrakt:

A társadalom egyre növekvő átlagéletkora az Alzheimer-kór előfordulását jelentősen fokozza. Mindez a társadalmi és gazdasági terhek nagymértékű növekedésével társul, ami sürgős cselekvésre invitál az egészségügy területén is, mind a diagnosztika, mind a terápia részéről. A dementia leggyakoribb oka az Alzheimer-kór, amelynek jellegzetes kórszövettani eltérései jól ismertek. A funkcionális eltérések kimutatása a kórkép korai diagnosztikáját eredményezi, ami évekkel megelőzi a morfológiai eltéréseket. Az anyagcsere-változások kimutatásában, a molekuláris pozitronemissziós tomográfia fontos szerepet játszik. A glükózmetabolikus mintázat az egyes klinikai formáknál jellegzetes mintázati eltéréseket mutat. A β-amiloid fehérjéhez kötődő számos radiofarmakon közül kiemelendő a kutatásban széles körben alkalmazott [11C]Pittsburgh compound B, valamint a diagnosztikában széleskörűen elfogadott [18F]florbetapir. A közelmúltban jelentek meg a tau fehérje alkotta neurofibrillaris kötegeket megjelenítő trészerek, és azóta is folyamatosan fejlődő, újabb radiofarmakonok jelennek meg. Ezek a trészerek fontos szerepet játszanak a kutatásban és a diagnosztikában egyaránt. Orv Hetil. 2019; 160(33): 1289–1295.

  • 1

    Borbély K. Functional imaging examinations in dementia – Part 1. [Funkcionális képalkotó vizsgálatok dementiában – I. rész.] Agyérbetegségek 2001; 7: 11–19. [Hungarian]

  • 2

    Alzheimer’s Disease International. World Alzheimer Report 2016. Available from: https://www.alz.co.uk/research/world-report-2016 [accessed: September 27, 2018].

  • 3

    Kollack-Walker S, Liu CY, Fleisher AS. The role of neuroimaging in the assessment of the cognitively impaired elderly. Neurol Clin. 2017; 35: 231–262.

  • 4

    Borbély K. New challenges and new potentials in the management of patients in oncology: PET/MRI clinical applications. [Újdonságok és új lehetőségek az onkológiai betegek terápiás vezetésében: PET/MR klinikai alkalmazások.] Magy Onkol. 2015; 59: 10–16. [Hungarian]

  • 5

    Bouwman FH, Schoonenboom SN, van der Flier WM, et al. CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiol Aging 2007; 28: 1070–1074.

  • 6

    Borbély K. Clinical aspects of PET examinations. [A PET-vizsgálatok klinikai aspektusai.] Ideggyogy Szle 1998; 51: 274–280. [Hungarian]

  • 7

    Borbély K, Kásler M. PET/CT and PET/MRI in oncology: diagnosis and follow-up of treatment efficacy. [PET/CT és PET/MR képalkotás a daganatos betegek diagnózisában és a terápia eredményességének követésében.] Háziorv Továbbk Szle. 2018; 23: 504–507. [Hungarian]

  • 8

    Borbély K. New challenges and perspectives in nuclear medicine imaging. [Újdonságok és új lehetőségek a nukleáris medicina képalkotásban.] Magy Onkol. 2014; 58: 232–238. [Hungarian]

  • 9

    Borbély K. Visualisation of the brain dysfunction by functional imaging modalities. [Az agyi működészavarok megjelenítése funkcionális képalkotó módszerekkel.] Medicina Könyvkiadó, Budapest, 2005; pp. 316–333. [Hungarian]

  • 10

    Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979; 6: 371–388.

  • 11

    Meles SK, Pagani M, Arnaldi D, et al. The Alzheimer’s disease metabolic brain pattern in mild cognitive impairment. J Cereb Blood Flow Metab. 2017; 37: 3643–3648.

  • 12

    Bao W, Jia H, Finnema S, et al. PET imaging for early detection of Alzheimer’s disease: from pathologic to physiologic biomarkers. PET Clin. 2017; 12: 329–350.

  • 13

    Scheltens NM, van der Weijden K, Adriaanse SM, et al. Hypometabolism of the posterior cingulate cortex is not restricted to Alzheimer’s disease. Neuroimage Clin. 2018; 19: 625–632.

  • 14

    Chiaravalloti A, Koch G, Toniolo S, et al. Comparison between early-onset and late-onset Alzheimer’s disease patients with amnestic presentation: CSF and 18F-FDG PET study. Dement Geriatr Cogn Dis Extra 2016; 6: 108–119.

  • 15

    Vanhoutte M, Semah F, Rollin Sillaire A, et al. 18F-FDG PET hypometabolism patterns reflect clinical heterogeneity in sporadic forms of early-onset Alzheimer’s disease. Neurobiol Aging 2017; 59: 184–196.

  • 16

    Kaether C, Haass C, Steiner H. Assembly, trafficking and function of γ-secretase. Neurodegener Dis. 2006; 3: 275–283.

  • 17

    Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991; 12: 383–388.

  • 18

    Selkoe DJ. Biochemistry and molecular biology of amyloid β-protein and the mechanism of Alzheimer’s disease. Handb Clin Neurol. 2008; 89: 245–260.

  • 19

    Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016; 8: 595–608.

  • 20

    Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004; 55: 306–319.

  • 21

    Ng S, Villemagne VL, Berlangieri S, et al. Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer’s disease. J Nucl Med. 2007; 48: 547–552.

  • 22

    Rowe CC, Ackerman U, Browne W, et al. Imaging of amyloid β in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008; 7: 129–135.

  • 23

    Villemagne VL, Mulligan RS, Pejoska S, et al. Comparison of 11C-PiB and 18F-florbetaben for A β imaging in agei ng and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 2012; 39: 983–989.

  • 24

    Rowe CC, Pejoska S, Mulligan RS, et al. Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for β-amyloid imaging in aging and dementia. J Nucl Med. 2013; 54: 880–886.

  • 25

    Higashi T, Nishii R, Kagawa S, et al. 18F-FPYBF-2, a new F-18-labelled amyloid imaging PET tracer: first experience in 61 volunteers and 55 patients with dementia. Ann Nucl Med. 2018; 32: 206–216.

  • 26

    Clark CM, Schneider JA, Bedell BJ, et al. Use of florbetapir-PET for imaging ß-amyloid pathology. JAMA 2011; 305: 275–283.

  • 27

    Landau SM, Breault C, Joshi AD, et al. Amyloid-β imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013; 54: 70–77.

  • 28

    Anand K, Sabbagh M. Amyloid imaging: poised for integration into medical practice. Neurotherapeutics 2017; 14: 54–61.

  • 29

    Kudo Y, Okamura N, Furumoto S, et al. 2-(2-[2-dimethylaminothiazol-5-yl]ethenyl)-6-(2-[fluoro]ethoxy)benzoxazole: a novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer’s disease patients. J Nucl Med. 2007; 48: 553–561.

  • 30

    Furumoto S, Okamura N, Furukawa K, et al. A 18F-labeled BF-227 derivative as a potential radioligand for imaging dense amyloid plaques by positron emission tomography. Mol Imaging Biol. 2013; 15: 497–506.

  • 31

    Nishii R, Higashi T, Kagawa S, et al. 18F-FPYBF-2, a new F-18 labelled amyloid imaging PET tracer: biodistribution and radiation dosimetry assessment of first-in-man 18F-FPYBF-2 PET imaging. Ann Nucl Med. 2018; 32: 256–263.

  • 32

    Devous MD Sr, Joshi AD, Navitsky M, et al. Test-retest reproducibility for the tau PET imaging agent flortaucipir F 18. J Nucl Med. 2018; 59: 937–943.

  • 33

    Gao YL, Wang N, Sun FR, et al. Tau in neurodegenerative disease. Ann Transl Med. 2018; 6: 175.

  • 34

    Xia CF, Arteaga J, Chen G, et al. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement. 2013; 9: 666–676.

  • 35

    Johnson KA, Schultz A, Betensky RA, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016; 79: 110–119.

  • 36

    Bischof GN, Jessen F, Fliessbach K, et al. Impact of tau and amyloid burden on glucose metabolism in Alzheimer’s disease. Ann Clin Transl Neurol. 2016; 3: 934–939.

  • 37

    Whitwell JL, Graff-Radford J, Tosakulwong N, et al. Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer’s disease. Alzheimers Dement. 2018; 14: 1005–1014.

  • 38

    Mattsson N, Smith R, Strandberg O, et al. Comparing 18F-AV-1451 with CSF t-tau and p-tau for diagnosis of Alzheimer disease. Neurology 2018; 90: e388–e395.

  • 39

    Fodero-Tavoletti MT, Okamura N, Furumoto S, et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain 2011; 134: 1089–1100.

  • 40

    Okamura N, Furumoto S, Harada R, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J Nucl Med. 2013; 54: 1420–1427.

  • 41

    Jonasson M, Wall A, Chiotis K, et al. Tracer kinetic analysis of (S)-18F-THK5117 as a PET tracer for assessing tau pathology. J Nucl Med. 2016; 57: 574–581.

  • 42

    Chiotis K, Saint-Aubert L, Savitcheva I, et al. Imaging in-vivo tau pathology in Alzheimer’s disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging 2016; 43: 1686–1699.

  • 43

    Betthauser TJ, Lao PJ, Murali D, et al. In vivo comparison of tau radioligands 18F-THK-5351 and 18F-THK-5317. J Nucl Med. 2017; 58: 996–1002.

  • 44

    Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 2013; 79: 1094–1108.

  • 45

    Betthauser TJ, Cody KA, Zammit MD, et al. In vivo characterization and quantification of neurofibrillary tau PET radioligand 18F-MK-6240 in humans from Alzheimer’s disease dementia to young controls. J Nucl Med. 2019; 60: 93–99.

  • 46

    Wang M, Gao M, Xu Z, et al. Synthesis of a PET tau tracer [11C]PBB3 for imaging of Alzheimer’s disease. Bioorg Med Chem Lett. 2015; 25: 4587–4592.

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

Mendeley citation style is available HERE.

 

MANUSCRIPT SUBMISSION

  • Impact Factor (2018): 0.564
  • Medicine (miscellaneous) SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu