View More View Less
  • 1 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest, Szigony u. 36., 1083
  • 2 Semmelweis Egyetem, Általános Orvostudományi Kar, Budapest
Open access

Absztrakt:

Egészségünket a szervezetünkben és a bőrünkön élő sokszínű mikrobaközösség jelentősen meghatározza. A normálflóra tagjai közötti egyensúly elengedhetetlen az egészség fenntartásában. Az újgenerációs szekvenálás gyors, szenzitív módszer, amely a mikrobiom egészének vizsgálatára alkalmas előzetes hipotézis nélkül, és információt ad a rezisztenciáról és a virulenciáról is. Ennek a módszernek a segítségével lehetővé vált betegségekben a patogén baktériumok, illetve az ezek szaporodását gátló, úgynevezett protektív baktériumok azonosítása. A mikrobiom változásainak feltérképezése segít új terápiás célpontok meghatározásában és az antibiotikumok célzott kiválasztásában. Széles spektrumú antibiotikum használatakor a normálflóra hasznos tagjai is kipusztulnak, ami visszatérő vagy krónikussá váló fertőzések kialakulásához vezet. A fül-orr-gégészeti infekciók a leggyakoribb fertőző betegségek az emberi szervezetben és az antibiotikum alkalmazásának vezető okai világszerte. Az egészséges emberben, illetve a fül-orr-gégészeti betegségekben előforduló baktérium-összetétellel kapcsolatban számos molekuláris biológiai vizsgálat történt az utóbbi években. A szerzők ismertetik az egyes fül-orr-gégészeti anatómiai régiók normálflórájának tagjait, és különböző patológiás állapotokban a baktérium-összetétel változásait is összefoglalják. Orv Hetil. 2019; 160(39): 1533–1541.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1

    Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016; 14: e1002533.

  • 2

    Bull MJ, Plummer NT. Part 1: The human gut microbiome in health and disease. Integr Med. 2014; 13: 17–22.

  • 3

    Huttenhower C, Gevers D, Knith R, et al., The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207–214.

  • 4

    Magne F, Puchi Silva A, Carvajal B, et al. The elevated rate of cesarean section and its contribution to non-communicable chronic diseases in Latin America: the growing involvement of the microbiota. Front Pediatr. 2017; 5: 192.

  • 5

    Sonnenburg JL, Fischbach MA. Community health care: therapeutic opportunities in the human microbiome. Sci Transl Med. 2011; 78: PS12.

  • 6

    Barna I, Nyúl D, Szentes T, et al. Review of the relation between gut microbiome, metabolic disease and hypertension. [A bélmikrobiom, a metabolikus betegségek és a hypertonia kapcsolatának irodalmi áttekintése.] Orv Hetil. 2018; 159: 346–351. [Hungarian]

  • 7

    McLoughlin RM, Mills KH. Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. J Allergy Clin Immunol. 2011; 127: 1097–1107.

  • 8

    Teele DW, Klein JO, Rosner BA. Epidemiology of otitis media in children. Ann Otol Rhinol Laryngol Suppl. 1980; 89: 5–6.

  • 9

    Stroman DW, Roland PS, Dohar J, et al. Microbiology of normal external auditory canal. Laryngoscope 2001; 111: 2054–2059.

  • 10

    Dibb WL. The normal microbial flora of the outer ear canal in healthy Norwegian individuals. NIPH Ann. 1990; 13: 11–16.

  • 11

    Campos A, Arias A, Betancor L, et al. Study of common aerobic flora of human cerumen. J Laryngol Otol. 1998; 112: 613–616.

  • 12

    Frank DN, Spiegelman GB, Davis W, et al. Culture-independent molecular analysis of microbial constituents of the healthy human outer ear. J Clin Microbiol. 2003; 41: 295–303.

  • 13

    Heward E, Cullen M, Hobson J. Microbiology and antimicrobial susceptibility of otitis externa: a changing pattern of antimicrobial resistance. J Laryngol Otol. 2018; 132: 314–317.

  • 14

    Kiakojuri K, Mahdavi Omran S, Jalili B, et al. Bacterial otitis externa in patients attending an ENT Clinic in Babol, North of Iran. Jundishapur J Microbiol. 2016; 9: e23093.

  • 15

    Westerberg BD, Kozak FK, Thomas EE, et al. Is the healthy middle ear a normally sterile site? Otol Neurotol. 2009; 30: 174–177.

  • 16

    Tonnaer EL, Mylanus EA, Mulder JJ, et al. Detection of bacteria in healthy middle ears during cochlear implantation. Arch Otolaryngol Head Neck Surg. 2009; 135: 232–237.

  • 17

    Minami SB, Mutai H, Suzuki T, et al. Microbiomes of the normal middle ear and ears with chronic otitis media. Laryngoscope 2017; 127: E371–E377.

  • 18

    Lappan R, Imbrogno K, Sikazwe C, et al. A microbiome case-control study of recurrent acute otitis media identified potentially protective bacterial genera. BMC Microbiol. 2018; 18: 13.

  • 19

    Ngo CC, Massa HM, Thornton RB, et al. Predominant bacteria detected from the middle ear fluid of children experiencing otitis media: a systematic review. PloS ONE 2016; 11: e0150949.

  • 20

    American Academy of Family Physicians, American Academy of Otolaryngology-Head and Neck Surgery, American Academy of Pediatrics Subcommittee on Otitis Media With Effusion. Otitis media with effusion. Pediatrics 2004; 113: 1412–1429.

  • 21

    Di Pierro F, Di Pasquale D, Di Cicco M. Oral use of Streptococcus salivarius K12 in children with secretory otitis media: preliminary results of a pilot, uncontrolled study. Int J Gen Med. 2015; 8: 303–308.

  • 22

    Skovbjerg S, Roos K, Holm SE, et al. Spray bacteriotherapy decreases middle ear fluid in children with secretory otitis media. Arch Dis Child. 2009; 94: 92–98.

  • 23

    Kuo CL. Etiopathogenesis of acquired cholesteatoma: prominent theories and recent advances in biomolecular research. Laryngoscope 2015; 125: 234–240.

  • 24

    Santos-Cortez RL, Hutchinson DS, Ajami NJ, et al. Middle ear microbiome differences in indigenous Filipinos with chronic otitis media due to a duplication in the A2ML1 gene. Infect Dis Poverty 2016; 5: 97.

  • 25

    Kalcioglu MT, Guldemir D, Unaldi O, et al. Metagenomics analysis of bacterial population of tympanosclerotic plaques and cholesteatomas. Otolaryngol Head Neck Surg. 2018; 159: 724–732.

  • 26

    Yan M, Pamp SJ, Fukuyama J, et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage. Cell Host Microbe 2013; 14: 631–640.

  • 27

    Proctor DM, Relman DA. The landscape ecology and microbiota of the human nose, mouth, and throat. Cell Host Microbe 2017; 21: 421–432.

  • 28

    Bomar L, Brugger SD, Yost BH, et al. Corynebacterium accolens releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols. mBio 2016; 7: e01725-15.

  • 29

    Ramakrishnan VR, Hauser LJ, Frank DN. The sinonasal bacterial microbiome in health and disease. Curr Opin Otolaryngol Head Neck Surg. 2016; 24: 20–25.

  • 30

    Lam K, Schleimer R, Kern RC. The etiology and pathogenesis of chronic rhinosinusitis: a review of current hypotheses. Curr Allergy Asthma Rep. 2015; 15: 41.

  • 31

    Copeland E, Leonard K, Carney R, et al. Chronic rhinosinusitis: potential role of microbial dysbiosis and recommendations for sampling sites. Front Cell Infect Microbiol. 2018; 8: 57.

  • 32

    Maxfield AZ, Korkmaz H, Gregorio LL, et al. General antibiotic exposure is associated with increased risk of developing chronic rhinosinusitis. Laryngoscope 2017; 127: 296–302.

  • 33

    Mårtensson A, Abolhalaj M, Lindstedt M, et al. Clinical efficacy of a topical lactic acid bacterial microbiome in chronic rhinosinusitis: a randomized controlled trial. Laryngoscope Investig Otolaryngol. 2017; 2: 410–416.

  • 34

    Roos K, Simark-Mattsson C, Grahn Håkansson E, et al. Can probiotic lactobacilli eradicate persistent carriage of meticillin-resistant Staphylococcus aureus? J Hosp Infect. 2011; 78: 77–78.

  • 35

    Hyun DW, Min HJ, Kim MS, et al. Dysbiosis of inferior turbinate microbiota is associated with high total IgE levels in patients with allergic rhinitis. Infect Immun. 2018; 86: e00934-17.

  • 36

    Güvenç IA, Muluk NB, Mutlu FŞ, et al. Do probiotics have a role in the treatment of allergic rhinitis? A comprehensive systematic review and meta-analysis. Am J Rhinol Allergy 2016; 30: 157–175.

  • 37

    Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome. J Bacteriol. 2010; 192: 5002–5017.

  • 38

    Wolf A, Moissl-Eichinger C, Perras A, et al. The salivary microbiome as an indicator of carcinogenesis in patients with oropharyngeal squamous cell carcinoma: a pilot study. Sci Rep. 2017; 7: 5867.

  • 39

    Gao Z, Kang Y, Yu J, et al. Human pharyngeal microbiome may play a protective role in respiratory tract infections. Genomics Proteomics Bioinformatics 2014; 12: 144–150.

  • 40

    Gong HL, Shi Y, Zhou L, et al. The composition of microbiome in larynx and the throat biodiversity between laryngeal squamous cell carcinoma patients and control population. PLoS ONE 2013; 8: e66476.

  • 41

    Kinnari TJ, Lampikoski H, Hyyrynen T, et al. Bacterial biofilm associated with chronic laryngitis. Arch Otolaryngol Head Neck Surg. 2012; 138: 467–470.

  • 42

    Jetté ME, Dill-McFarland KA, Hanshew AS, et al. The human laryngeal microbiome: effects of cigarette smoke and reflux. Sci Rep. 2016; 6: 35882.

  • 43

    Boutin S, Depner M, Stahl M, et al. Comparison of oropharyngeal microbiota from children with asthma and cystic fibrosis. Mediators Inflamm. 2017; 2017: 5047403.

  • 44

    Atkinson TP, Centor RM, Xiao L, et al. Analysis of the tonsillar microbiome in young adults with sore throat reveals a high relative abundance of Fusobacterium necrophorum with low diversity. PloS ONE 2018; 13: e0189423.

  • 45

    Brook I, Foote PA. Efficacy of penicillin versus cefdinir in eradication of group A streptococci and tonsillar flora. Antimicrob Agents Chemother. 2005; 49: 4787–4788.

  • 46

    Di Pierro F, Colombo M, Giuliani MG, et al. Effect of administration of Streptococcus salivarius K12 on the occurrence of streptococcal pharyngo-tonsillitis, scarlet fever and acute otitis media in 3 years old children. Eur Rev Med Pharmacol Sci. 2016; 20: 4601–4606.

  • 47

    Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14: 195–206.

  • 48

    Yan X, Yang M, Liu J, et al. Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res. 2015; 5: 3111–3122.

  • 49

    Wilson ID, Nicholson JK. The role of gut microbiota in drug response. Curr Pharm Des. 2009; 15: 1519–1523.

  • 50

    Gupta S, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol. 2016; 9: 229–239.

The author instructions are available in PDF.
Instructions for Authors in Hungarian HERE.

Mendeley citation style is available HERE.

 

MANUSCRIPT SUBMISSION

  • Impact Factor (2018): 0.564
  • Medicine (miscellaneous) SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.193
  • SJR Hirsch-Index (2018): 18

Language: Hungarian

Founded in 1857
Publication: Weekly, one volume of 52 issues annually

Senior editors

Editor(s)-in-Chief: Papp Zoltán

Read the professional career of Papp Zoltán HERE.

 

Editorial Board

Click for the Editorial Board

Akadémiai Kiadó
Address: Prielle Kornélia u. 21-35. H-1117 Budapest, Hungary
Phone: (+36 1) 464 8235 ---- Fax: (+36 1) 464 8221
Email: orvosihetilap@akkrt.hu