Összefoglaló. A fertőzésekhez kapcsolódó immunológiai kórképekre különösen jellemző, hogy mind etiológiai tényezőikben, mind klinikai képükben rendkívül heterogének. Az átfedő és inkomplett megjelenési formák nem ritkák, ami a diagnosztika standardizálását nehezíti. Egyes, a fertőzésekhez opcionálisan kapcsolódó tünetek megfigyelése már több mint egy évszázaddal ezelőtt elvezetett a gócelmélet megszületéséhez, amely eredeti formájában leginkább elnagyolt és naiv feltételezéseken alapult. Folyamatosan bővülő ismereteink ugyanakkor egyre több esetben támasztják alá, hogy az átvészelt, esetleg krónikus vagy perzisztáló fertőzések, illetve a mikrobiom összetétele számos ponton lehet befolyással immunológiai, metabolikus és endokrin homeosztázisunkra. A jelen munkában az ismert összefüggéseket, illetve a meghaladott feltételezéseket is röviden érintve megkíséreljük a rendelkezésre álló ismereteken keresztül áttekinteni a fertőzésekhez kapcsolódó immunológiai jelenségek szürkezónáját, azon kórtani folyamatokat és tüneteket, amelyek létezése igazolható, de terápiás következményeik az egyén szintjén egyelőre bizonytalanok. Orv Hetil. 2021; 162(38): 1526–1532.
Summary. Immunologic phenomena related to infections are well known to be truly heterogeneous, both regarding their etiology and the clinical picture. Overlapping symptoms and incomplete presentations are not seldom, which often constitute diagnostic challenge. Certain, optional complications of infectious diseases led to the creation of the focal infection theory more than a century ago, although only on the basis of assumptions derived from elusive and naive theories. However, an expanding body of evidence ever since did underline the impact of previous and persistent infections on the immunologic, metabolic and endocrine homeostasis. Besides briefly touching the well-defined diseases, as well as the outdated theories of this field, we aim to provide an overview of the grey zone of infection-related immunologic phenomena, the existence of which is biologically well established, however, their true significance on an individual basis remains uncertain. Orv Hetil. 2021; 162(38): 1526–1532.
Reimann HA, Havens WP. Focal infection and systemic disease: a critical appraisal: the case against indiscriminate removal of teeth and tonsils clinical lecture at St. Louis Session. JAMA 1940; 114: 1–6.
Guilherme L, Steer AC, Cunningham M. Pathogenesis of acute rheumatic fever. Chapter 2. In: Dougherty S, Carapetis J, Zühlke L, et al. (eds.) Acute rheumatic fever and rheumatic heart disease. Elsevier, San Diego, CA, 2020; pp. 19–30.
Schmitt SK. Reactive arthritis. Infect Dis Clin North Am. 2017; 31: 265–277.
Satoskar AA, Parikh SV, Nadasdy T. Epidemiology, pathogenesis, treatment and outcomes of infection-associated glomerulonephritis. Nat Rev Nephrol. 2020; 16: 32–50.
Ronco P, Debiec H. Pathogenesis of membranous nephropathy: recent advances and future challenges. Nat Rev Nephrol. 2012; 8: 203–213.
De Virgilio A, Greco A, Magliulo G, et al. Polyarteritis nodosa: a contemporary overview. Autoimmun Rev. 2016; 15: 564–570.
Roccatello D, Saadoun D, Ramos-Casals M, et al. Cryoglobulinaemia. Nat Rev Dis Primers 2018; 4: 11.
Hafsi W, Badri T. Erythema nodosum. StatPearls Publishing, Treasure Island, FL, 2021.
van den Berg B, Walgaard C, Drenthen J, et al. Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014; 10: 469–482.
Bingham CO 3rd, Moni M. Periodontal disease and rheumatoid arthritis: the evidence accumulates for complex pathobiologic interactions. Curr Opin Rheumatol. 2013; 25: 345–353.
Wessely S. Surgery for the treatment of psychiatric illness: the need to test untested theories. J R Soc Med. 2009; 102: 445–451.
Billings F. Focal infection: its broader application in the etiology of general disease. JAMA 1914; 63: 899–903.
Mathias M. Autointoxication and historical precursors of the microbiome–gut–brain axis. Microb Ecol Health Dis. 2018; 29: 1548249.
Iung B, Duval X. Infective endocarditis: innovations in the management of an old disease. Nat Rev Cardiol. 2019; 16: 623–635.
Park SY, Kim SH, Kang SH, et al. Improved oral hygiene care attenuates the cardiovascular risk of oral health disease: a population-based study from Korea. Eur Heart J. 2019; 40: 1138–1145.
Batty GD, Jung KJ, Mok Y, et al. Oral health and later coronary heart disease: cohort study of one million people. Eur J Prev Cardiol. 2018; 25: 598–605.
Seymour RA. Is oral health a risk for malignant disease? Dent Update 2017; 37: 279–280.
Engebretson SP, Hey-Hadavi J, Ehrhardt FJ, et al. Gingival crevicular fluid levels of interleukin-1β and glycemic control in patients with chronic periodontitis and type 2 diabetes. J Periodontol. 2004; 75: 1203–1208.
D’Aiuto F, Parkar M, Andreou G, et al. Periodontitis and systemic inflammation: control of the local infection is associated with a reduction in serum inflammatory markers. J Dent Res. 2004; 83: 156–160.
Santos Tunes R, Foss-Freitas MC, Nogueira-Filho Gda R. Impact of periodontitis on the diabetes-related inflammatory status. J Can Dent Assoc. 2010; 76: a35.
Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell 2014; 159: 789–799.
Chang CJ, Lin TL, Tsai YL, et al. Next generation probiotics in disease amelioration. J Food Drug Anal. 2019; 27: 615–622.
Lee P, Yacyshyn BR, Yacyshyn MB. Gut microbiota and obesity: an opportunity to alter obesity through faecal microbiota transplant (FMT). Diabetes Obes Metab. 2019; 21: 479–490.
Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017; 8: 845.
Kashtanova D, Tkacheva O, Popenko A, et al. Gut microbiota and vascular biomarkers in patients without clinical cardiovascular diseases. Artery Res. 2017; 18: 41–48.
Yang T, Santisteban MM, Rodriguez V, et al. Gut microbiota dysbiosis is linked to hypertension. Hypertension 2015; 65: 1331–1340.
Seksik P, Rigottier-Gois L, Gramet G, et al. Alterations of the dominant faecal bacterial groups in patients with Crohn’s disease of the colon. Gut 2003; 52: 237–242.
Lepage P, Häsler R, Spehlmann ME, et al. Twin study indicates loss of interaction between microbiota and mucosa of patients with ulcerative colitis. Gastroenterology 2011; 141: 227–236.
Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014; 63: 1275–1283.
Wong SH, Yu J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat Rev Gastroenterol Hepatol. 2019; 16: 690–704.
Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015; 21: 895–905.
Nicoletti A, Ponziani FR, Biolato M, et al. Intestinal permeability in the pathogenesis of liver damage: from non-alcoholic fatty liver disease to liver transplantation. World J Gastroenterol. 2019; 25: 4814–4834.
DeMeo MT, Mutlu EA, Keshavarzian A, et al. Intestinal permeation and gastrointestinal disease. J Clin Gastroenterol. 2002; 34: 385–396.
Hartmann P, Seebauer CT, Schnabl B. Alcoholic liver disease: the gut microbiome and liver cross talk. Alcohol Clin Exp Res. 2015; 39: 763–775.
Firneisz G. Non-alcoholic fatty liver disease and type 2 diabetes mellitus: the liver disease of our age? World J Gastroenterol. 2014; 20: 9072–9089.
Guo C, Huang T, Chen A, et al. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz J Med Biol Res. 2016; 49: e5826.
Winters BD, Eberlein M, Leung J, et al. Long-term mortality and quality of life in sepsis: a systematic review. Crit Care Med. 2010; 38: 1276–1283.
Mankowski RT, Yende S, Angus DC. Long-term impact of sepsis on cardiovascular health. Intensive Care Med. 2019; 45: 78–81.
Yende S, D’Angelo G, Kellum JA, et al. Inflammatory markers at hospital discharge predict subsequent mortality after pneumonia and sepsis. Am J Respir Crit Care Med. 2008; 177: 1242–1247.
Hawkins RB, Raymond SL, Stortz JA, et al. Chronic critical illness and the persistent inflammation, immunosuppression, and catabolism syndrome. Front Immunol. 2018; 9: 1511.
Zhou J, Nefedova Y, Lei A, et al. Neutrophils and PMN-MDSC: their biological role and interaction with stromal cells. Semin Immunol. 2018; 35: 19–28.
Boettler T, von Herrath M. Protection against or triggering of type 1 diabetes? Different roles for viral infections. Expert Rev Clin Immunol. 2011; 7: 45–53.
Schloot NC, Willemen SJ, Duinkerken G, et al. Molecular mimicry in type 1 diabetes mellitus revisited: T-cell clones to GAD65 peptides with sequence homology to Coxsackie or proinsulin peptides do not crossreact with homologous counterpart. Hum Immunol. 2001; 62: 299–309.
Christen U, Edelmann KH, McGavern DB, et al. A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. J Clin Invest. 2004; 114: 1290–1298.
Smatti MK, Cyprian FS, Nasrallah GK, et al. Viruses and autoimmunity: a review on the potential interaction and molecular mechanisms. Viruses 2019; 11: 762.
Zhang A, Stacey HD, Mullarkey CE, et al. Original antigenic sin: how first exposure shapes lifelong anti-influenza virus immune responses. J Immunol. 2019; 202: 335–340.
Sorini C, Cosorich I, Conte ML, et al. Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci USA 2019; 116: 15140–15149.
Zuberbier T, Aberer W, Asero R, et al. The EAACI/GA2 LEN/EDF/WAO Guideline for the definition, classification, diagnosis, and management of urticaria: the 2013 revision and update. Allergy 2014; 69: 868–887.
Saleh D, Tanner LS. Guttate psoriasis. StatPearls Publishing, Treasure Island, FL, 2021.
Rasa S, Nora-Krukle Z, Henning N, et al. Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med. 2018; 16: 268.
Lande A, Fluge Ø, Strand EB, et al. Human leukocyte antigen alleles associated with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Sci Rep. 2020; 10: 5267.
Curriu M, Carrillo J, Massanella M, et al. Screening NK-, B- and T-cell phenotype and function in patients suffering from chronic fatigue syndrome. J Transl Med. 2013; 11: 68.
Montoya JG, Holmes TH, Anderson JN, et al. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc Natl Acad Sci USA 2017; 114: E7150–E7158.