Összefoglaló. A cardialis troponinok biomarkerként való alkalmazása az akut myocardialis infarctus diagnosztikájában nagy múltra tekint vissza, és ez idő alatt jelentősen megváltoztak a cardialis troponinok diagnosztikai jelentőségével kapcsolatos elképzelések. Ez pedig a szívtroponinok és mindenekelőtt az érzékenység mérésére szolgáló laboratóriumi módszerek fejlődésének köszönhető. A legelső laboratóriumi módszerek, amelyeket több mint 30 évvel ezelőtt fejlesztettek ki a cardialis troponinok vérszérumban való kimutatására, még rendkívül alacsony érzékenységűek voltak, ezért csak 12–24 órával az akut myocardialis infarctus jelentkezése után tudták kimutatni a diagnózis felállításában jelentőséggel bíró troponinszintet. Ezenkívül a szívtroponin molekuláinak diagnosztikai reagensei nem specifikus módon kölcsönhatásba léphetnek a vázizombeli troponin molekuláival, ami a vázizmok betegségei és sérülései esetén a cardialis troponin koncentrációjának gyakori hamis pozitív növekedéséhez vezetett. Ahogy a cardialis troponinok mérési módszerei javultak, érzékenységük növekedésével (nagy érzékenységű cardialis troponinok) új lehetőségek nyíltak meg az akut myocardialis infarctus korai diagnózisának felállítására, és többek között modern diagnosztikai algoritmusokat is kifejlesztettek: 0–1 órás, 0–2 órás, 0–3 órás. Ez a korai diagnózis felállítását engedte meg azoknál a betegeknél, akiknek mellkasi fájdalmaik voltak, s ezzel korábban dönthettek a páciens gyógyításának optimális taktikájáról. Miután bevezetésre kerültek a cardialis troponin szintjének nagy érzékenységű mérési módszerei, a cardialis troponin molekuláinak biológiájával kapcsolatos elképzeléseink némileg megváltoztak, különösképpen, hogy innentől kezdve már nem tekinthetők szigorúan intracelluláris molekuláknak, mivel minden egészséges emberben kimutathatók, valamint nemi, életkori és cirkadián tulajdonságokat is felfedeztek a cardialis troponin koncentrációiban, amelyek ugyancsak szerepet játszhatnak az akut myocardialis infarctus diagnózisának felállításában. Arról nem is beszélve, hogy a nagy érzékenységű cardialis troponinok alkalmazási lehetőségei messze túlmutatnak az akut myocardialis infarctus diagnózisán. A jelen cikk egy történeti és egy modern perspektívát kíván bemutatni a cardialis troponinok legfontosabb analitikai jellemzőiről, érintve az azok biológiájára vonatkozó új adatokat és felhasználásuk új diagnosztikai lehetőségeit is. Orv Hetil. 2022; 163(1): 12–20.
Summary. Throughout a very long history of using cardiac troponins in clinical practice as biomarkers of acute myocardial infarction, there have been significant changes in ideas about their diagnostic value. Such a circumstance is caused by the improvement of laboratory methods of cardiac troponin determination and, first of all, sensitivity. Thus, the very first laboratory methods designed to detect cardiac troponins in serum, developed over 30 years ago, had extremely low sensitivity, due to which they could detect diagnostically significant levels of troponins only 12–24 hours after the development of acute myocardial infarction. In addition, diagnostic antibodies directed against cardiac troponin molecules could interact nonspecifically with skeletal troponin molecules, leading to frequent false-positive increases in cardiac troponin concentrations in skeletal muscle disease and injury. As the methods of determining cardiac troponins improved, increasing their sensitivity (high-sensitivity cardiac troponins), the prospects for early diagnosis of acute myocardial infarction opened up, in particular, modern diagnostic algorithms: 0–1 hour, 0–2 hours, 0–3 hours. This allowed earlier diagnosis of patients who came with chest pain, and earlier decision-making on the choice of optimal tactics for the treatment of patients. With the introduction of high-sensitivity cardiac troponin assays, our understanding of the biology of cardiac troponin molecules has changed somewhat, in particular, they are no longer considered strictly intracellular molecules, as they are now detectable in all healthy individuals, and gender, age and circadian patterns in cardiac troponin concentrations have been discovered, which may have an impact on the diagnosis of acute myocardial infarction. Moreover, the possibilities of using highly sensitive cardiac troponins go far beyond the diagnosis of acute myocardial infarction. This article presents a view of the main analytical characteristics from a historical and contemporary perspective, covering some new data on the biology of cardiac troponins and new diagnostic possibilities for their use. Orv Hetil. 2022; 163(1): 12–20.
Thygesen K, Alpert JS, Jaffe AS, et al. Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Glob Heart 2018; 13: 305–338.
Pasquale F, Syrris P, Kaski JP, et al. Long-term outcomes in hypertrophic cardiomyopathy caused by mutations in the cardiac troponin T gene. Circ Cardiovasc Genet. 2012; 5: 10–17.
Duplyakov DV, Chaulin AM. Mutations of heart troponines, associated with cardiomyopathies. Cardiology: news, opinions, training 2019; 7: 8–17. [Russian]
Messner B, Baum H, Fischer P, et al. Expression of messenger RNA of the cardiac isoforms of troponin T and I in myopathic skeletal muscle. Am J Clin Pathol. 2000; 114: 544–549. [Erratum: Am J Clin Pathol. 2000; 114: 986.]
Ricchiutti V, Apple FS. RNA expression of cardiac troponin T isoforms in diseased human skeletal muscle. Clin Chem. 1999; 45: 2129–2135. [Erratum: Clin Chem. 2000; 46: 437.]
Wens SC, Schaaf GJ, Michels M, et al. Elevated plasma cardiac troponin T levels caused by skeletal muscle damage in pompe disease. Circ Cardiovasc Genet. 2016; 9: 6–13.
Schmid J, Liesinger L, Birner-Gruenberger R, et al. Elevated cardiac troponin T in patients with skeletal myopathies. J Am Coll Cardiol. 2018; 71: 1540–1549.
Rusakov DY, Vologdina NN, Tulayeva ON. The development of striated cardiac muscle tissue in the walls of the caval and pulmonary veins. J Anatomy Histopathol. 2015; 4: 105. [Russian]
Chaulin AM, Karslyan LS, Duplyakov DV. Non-coronarogenic causes of increased cardiac troponins in clinical practice. J Clin Pract. 2019; 10: 81–93. [Russian]
Park KC, Gaze DC, Collinson PO, Marber MS. Cardiac troponins: from myocardial infarction to chronic disease. Cardiovasc Res. 2017; 113: 1708–1718.
Chaulin AM, Abashina OE, Duplyakov DV. Pathophysiological mechanisms of cardiotoxicity in chemotherapeutic agents. Russian Open Med J. 2020; 9: e0305.
Chaulin AM, Duplyakov DV. Arrhythmogenic effects of doxorubicin. Complex Issues Cardiovasc Dis. 2020; 9: 69–80. [Russian]
Chaulin AM, Duplyakov DV. MicroRNAs in atrial fibrillation: pathophysiological aspects and potential biomarkers. Int J Biomed. 2020; 10: 198–205.
Wilhelm J, Hettwer S, Schuermann M, et al. Elevated troponin in septic patients in the emergency department: frequency, causes, and prognostic implications. Clin Res Cardiol. 2014; 103: 561–567.
Dubin RF, Li Y, He J, et al. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: a cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol. 2013; 14: 229.
Zümrütdal AO, Bakinen O, Uçan H, et al. Relationship between uremic myopathy and false-positive cardiac troponin T test. Nephron 2000; 86: 522–523.
Klinkenberg LJ, Wildi K, van der Linden N, et al. Diurnal rhythm of cardiac troponin: consequences for the diagnosis of acute myocardial infarction. Clin Chem. 2016; 62: 1602–1611.
Chaulin AM, Duplyakova PD, Duplyakov DV. Circadian rhythms of cardiac troponins: mechanisms and clinical significance. Russian J Cardiol. 2020; 25: 4061. [Russian]
Chaulin AM, Duplyakov DV. High-sensitivity cardiac troponins: circadian rhythms. Cardiovasc Ther Prev. 2021; 20: 2639. [Russian]
Apple FS, Jaffe AS, Collinson P, et al. IFCC educational materials on selected analytical and clinical applications of high sensitivity cardiac troponin assays. Clin Biochem. 2015; 48: 201–203.
Gore MO, Seliger SL, deFilippi CR, et al. Age- and sex-dependent upper reference limits for the high-sensitivity cardiac troponin T assay. J Am Coll Cardiol. 2014; 63: 1441–1448.
Trupp RJ, Albert G, Ziegler A. Sex-specific 99th percentiles derived from the AACC Universal Sample Bank for the Roche Gen 5 cTnT assay: comorbidities and statistical methods influence derivation of reference limits. Clin Biochem. 2018; 52: 173.
van der Linden N, Cornelis T, Klinkenberg LJ, et al. Strong diurnal rhythm of troponin T, but not troponin I, in a patient with renal dysfunction. Int J Cardiol. 2016; 221: 287–288.
Chaulin AM, Duplyakov VD. On the potential effect of circadian rhythms of cardiac troponins on the diagnosis of acute myocardial infarction. Signa Vitae 2021; 17: 79–84.
International Federation of Clinical Chemistry. High-sensitivity* cardiac troponin I and T assay analytical characteristics designated by manufacturer. IFCC Committee on Clinical Applications of Cardiac Bio-Markers (C-CB) v122019. Available from: https://www.ifcc.org/media/478231/high-sensitivity-cardiac-troponin-i-and-t-assay-analytical-characteristics-designated-by-manufacturer-v122019.pdf [accessed: July 1, 2021].
Pervan P, Svaguša T, Prkačin I, et al. Urine high sensitive troponin I measuring in patients with hypertension. Signa Vitae 2017; 13(Suppl 3): 62–64.
Chaulin AM, Karslyan LS, Bazyuk EV, et al. Clinical and diagnostic value of cardiac markers in human biological fluids. Kardiologiia 2019; 59: 66–75. [Russian]
Mirzaii-Dizgah I, Riahi E. Salivary high-sensitivity cardiac troponin T levels in patients with acute myocardial infarction. Oral Dis. 2013; 19: 180–184.
Chaulin AM, Duplyakova PD, Bikbaeva GR, et al. Concentration of high-sensitivity cardiac troponin I in the oral fluid in patients with acute myocardial infarction: a pilot study. Russian J Cardiol. 2020; 25: 3814.
Cummins B, Auckland ML, Cummins P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J. 1987; 113: 1333–1344.
Venge P, Lindahl B. Cardiac troponin assay classification by both clinical and analytical performance characteristics: a study on outcome prediction. Clin Chem. 2013; 59: 976–981.
Katus HA, Looser S, Hallermayer K, et al. Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin Chem. 1992; 38: 386–393.
Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined – a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol. 2000; 36: 959–969. [Erratum: J Am Coll Cardiol. 2001; 37: 973.]
Hermsen D, Apple F, Garcia-Beltràn L, et al. Results from a multicenter evaluation of the 4th generation Elecsys troponin T assay. Clin Lab. 2007; 53: 1–9.
Reichlin T, Hochholzer W, Stelzig C, et al. Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol. 2009; 54: 60–68.
Mingels A, Jacobs L, Michielsen E, et al. Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin Chem. 2009; 55: 101–108.
Keller T, Zeller T, Ojeda F, et al. Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. JAMA 2011; 306: 2684–2693.
Adams JE 3rd, Bodor GS, Dávila-Román VG, et al. Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation 1993; 88: 101–106.
Apple FS. Counterpoint: Standardization of cardiac troponin I assays will not occur in my lifetime. Clin Chem. 2012; 58: 169–171.
Anand A, Shah AS, Beshiri A, et al. Global adoption of high-sensitivity cardiac troponins and the universal definition of myocardial infarction. Clin Chem. 2019; 65: 484–489.
Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008; 29(Suppl 1): S49–S52.
Apple FS. A new season for cardiac troponin assays: it’s time to keep a scorecard. Clin Chem. 2009; 55: 1303–1306.
Collinson PO, Heung YM, Gaze D, et al. Influence of population selection on the 99th percentile reference value for cardiac troponin assays. Clin Chem. 2012; 58: 219–225.
Eggers KM, Apple FS, Lind L, et al. The applied statistical approach highly influences the 99th percentile of cardiac troponin I. Clin Biochem. 2016; 49: 1109–1112.
Sörensen NA, Neumann JT, Ojeda F, et al. Challenging the 99th percentile: a lower troponin cutoff leads to low mortality of chest pain patients. Int J Cardiol. 2017; 232: 289–293.
Pickering JW, Than MP, Cullen L, et al. Rapid rule-out of acute myocardial infarction with a single high-sensitivity cardiac troponin T measurement below the limit of detection: a collaborative meta-analysis. Ann Intern Med. 2017; 166: 715–724.
Jaeger C, Wildi K, Twerenbold R, et al. One-hour rule-in and rule-out of acute myocardial infarction using high-sensitivity cardiac troponin I. Am Heart J. 2016; 171: 92–102.e5.
Nestelberger T, Wildi K, Boeddinghaus J, et al. Characterization of the observe zone of the ESC 2015 high-sensitivity cardiac troponin 0 h/1 h-algorithm for the early diagnosis of acute myocardial infarction. Int J Cardiol. 2016; 207: 238–245.
Greenslade JH, Carlton EW, Van Hise C, et al. Diagnostic accuracy of a new high-sensitivity troponin I assay and five accelerated diagnostic pathways for ruling out acute myocardial infarction and acute coronary syndrome. Ann Emerg Med. 2018; 71: 439–451.e3.
Garcia-Osuna A, Gaze D, Grau-Agramunt M, et al. Ultrasensitive quantification of cardiac troponin I by a single molecule counting method: analytical validation and biological features. Clin Chim Acta 2018; 486: 224–231.