A pancreaticus lipidakkumuláció – amelyet egyre gyakrabban NAFPD (non-alcoholic fatty pancreas disease) néven említenek az angol nyelvű szakirodalomban – az elmúlt néhány évben került az érdeklődés előterébe. Az elváltozást több, eltérő névvel illették korábban; a NAFPD megnevezést hazánkban még ma is csak ritkán használjuk, magyar nyelvű megfelelője sem kristályosodott ki. A pancreaticus lipidfelhalmozódást az ectopiás zsírszövet-akkumuláció egyik megjelenési formájaként tartják számon. A NAFPD felismerése képalkotó vizsgálatokkal lehetséges, a klinikai gyakorlatban leginkább az ultrahangvizsgálat és a komputertomográfia jön szóba, de a kvantifikáció még nem kiforrott. A NAFPD prevalenciája a felnőtt lakosság körében 30–35%-ra tehető, előfordulására elhízott gyermekek/serdülők körében is számíthatunk. A NAFPD érinti a pancreas endokrin és exokrin funkcióját. A NAFPD és a 2-es típusú diabetes/metabolikus szindróma összefüggését több tanulmány igazolta, a NAFPD lokális következményeiről még kevés ismerettel rendelkezünk. Adatok szólnak amellett, hogy a NAFPD-nak szerepe lehet a heveny és az idült pancreatitis, illetve a pancreascarcinoma kialakulásában, a pancreas exokrin diszfunkciójában. A NAFPD-t előnyösen befolyásolja a testsúly csökkenése, ami elhízottak körében életmód-terápiával, gyógyszeres intervencióval vagy bariátriai sebészeti beavatkozással érhető el. Fontos, hogy a 2-es típusú diabetesben szenvedő, testsúlyfelesleggel rendelkező betegek antihyperglykaemiás kezelése olyan antidiabetikumokkal történjen, amelyek a jó glykaemiás kontroll mellett testsúlyredukciót is eredményeznek. A NAFPD feltehetően gyakori, de ritkán felismert, viszonylag új klinikai entitás, amely a belgyógyászaton belül több szubspecialitás (gasztroenterológia, diabetológia, lipidológia, obezitológia), illetve a sebészet területén tevékenykedő szakemberek érdeklődési körébe esik. Orv Hetil. 2022; 163(44): 1735–1742.
Lim S, Meigs JB. Links between ectopic fat and vascular disease in humans. Arterioscler Thromb Vasc Biol. 2014; 34: 1820–1826.
Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013; 93: 359–404.
Pár A, Pár G. Non-alcoholic fatty liver disease and hepatocellular carcinoma – 2016. [Nem alkoholos zsírmáj és hepatocellularis carcinoma – 2016.] Orv Hetil. 2016; 157: 987–994. [Hungarian]
Eslam M, Sanyal AJ, George J.; International Consensus Panel. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020; 158: 1999–2014.e1.
Younossi ZM, Rinella ME, Sanyal AJ, et al. From NAFLD to MAFLD: implications of a premature change in terminology. Hepatology 2021; 73: 1194–1198.
Iacobellis G, Malazavos AE, Corsi MM. Epicardial fat: from the biomolecular aspects to the clinical practice. Int J Biochem Cell Biol. 2011; 43: 1651–1654.
Smits MM, van Geenen EJ. The clinical significance of pancreatic steatosis. Nat Rev Gastroenterol Hepatol. 2011; 8: 169–177.
Catanzaro R, Cuffari B, Italia A, et al. Exploring the metabolic syndrome: nonalcoholic fatty pancreas disease. World J Gastroenterol. 2016; 22: 7660–7675.
Singh RG, Yoon HD, Wu LM, et al. Ectopic fat accumulation in the pancreas and its clinical relevance: a systematic review, meta-analysis, and meta-regression. Metabolism 2017; 69: 1–13.
Zhang CL, Wang JJ, Li JN, et al. Nonalcoholic fatty pancreas disease: an emerging clinical challenge. World J Clin Cases 2021; 9: 6624–6638.
Khoury T, Asombang AW, Berzin TM, et al. The clinical implications of fatty pancreas: a concise review. Dig Dis Sci. 2017; 62: 2658–2667.
Ogilvie RF. The islands of Langerhans in 19 cases of obesity. J Pathol Bacteriol. 1933; 37: 473–481.
Mathur A, Marine M, Lu D, et al. Nonalcoholic fatty pancreas disease. HPB (Oxford) 2007; 9: 312–318.
Filippatos TD, Alexakis K, Mavrikaki V, et al. Nonalcoholic fatty pancreas disease: role in metabolic syndrome, “prediabetes”, diabetes and atherosclerosis. Dig Dis Sci. 2022; 67: 26–41.
Sepe PS, Ohri A, Sanaka S, et al. A prospective evaluation of fatty pancreas by using EUS. Gastrointest Endosc. 2011; 73: 987–993.
Li J, Xie Y, Yuan F, et al. Noninvasive quantification of pancreatic fat in healthy male population using chemical shift magnetic resonance imaging: effect of aging on pancreatic fat content. Pancreas 2011; 40: 295–299.
Wu WC, Wang CY. Association between non-alcoholic fatty pancreatic disease (NAFPD) and the metabolic syndrome: case-control retrospective study. Cardiovasc Diabetol. 2013; 12: 77.
Wang CY, Ou HY, Chen MF, et al. Enigmatic ectopic fat: prevalence of nonalcoholic fatty pancreas disease and its associated factors in a Chinese population. J Am Heart Assoc. 2014; 3: e000297.
Wong VW, Wong GL, Yeung DK, et al. Fatty pancreas, insulin resistance, and β-cell function: a population study using fat-water magnetic resonance imaging. Am J Gastroenterol. 2014; 109: 589–597.
Della Corte C, Mosca A, Majo F, et al. Nonalcoholic fatty pancreas disease and nonalcoholic fatty liver disease: more than ectopic fat. Clin Endocrinol (Oxf). 2015; 83: 656–662.
Lesmana CR, Pakasi LS, Inggriani S, et al. Prevalence of non-alcoholic fatty pancreas disease (NAFPD) and its risk factors among adult medical check-up patients in a private hospital: a large cross sectional study. BMC Gastroenterol. 2015; 15: 174.
Pham YH, Bingham BA, Bell CS, et al. Prevalence of pancreatic steatosis at a pediatric tertiary care center. South Med J. 2016; 109: 196–198.
Zhou J, Li ML, Zhang DD, et al. The correlation between pancreatic steatosis and metabolic syndrome in a Chinese population. Pancreatology 2016; 16: 578–583.
Okada K, Watahiki T, Horie K, et al. The prevalence and clinical implications of pancreatic fat accumulation identified during a medical check-up. Medicine (Baltimore) 2021; 100: e27487.
Bi Y, Wang JL, Li ML, et al. The association between pancreas steatosis and metabolic syndrome: a systematic review and meta-analysis. Diabetes Metab Res Rev. 2019; 35: e3142.
Kim SY, Kim H, Cho JY, et al. Quantitative assessment of pancreatic fat by using unenhanced CT: pathologic correlation and clinical implications. Radiology 2014; 271: 104–112.
Chen Y, Zhang P, Lv S, et al. Ectopic fat deposition and its related abnormalities of lipid metabolism followed by nonalcoholic fatty pancreas. Endosc Ultrasound. 2022 Jul 8. . [Epub ahead of print]
Zsóri G, Illés D, Ivány E, et al. In new-onset diabetes mellitus, metformin reduces fat accumulation in the liver, but not in the pancreas or pericardium. Metab Syndr Relat Disord. 2019; 17: 289–295.
Britton KA, Fox CS. Ectopic fat depots and cardiovascular disease. Circulation 2011; 124: e837–e841.
Rugivarodom M, Geeratragool T, Pausawasdi N, et al. Fatty pancreas: linking pancreas pathophysiology to nonalcoholic fatty liver disease. J Clin Transl Hepatol. 2022 July 14. . [Epub ahaed of print]
Jermendy G, Kolossváry M, Drobni Z, et al. Environmental factors slightly outweigh genetic influences in the development of pancreatic lipid accumulation: a classical twin study. Metab Syndr Relat Disord. 2020; 18: 413–418.
Yu TY, Wang CY. Impact of non-alcoholic fatty pancreas disease on glucose metabolism. J Diabetes Investig. 2017; 8: 735–747.
Zhao ZZ, Xin LL, Xia JH, et al. Long-term high-fat high-sucrose diet promotes enlarged islets and β-cell damage by oxidative stress in bama minipigs. Pancreas 2015; 44: 888–895.
Hung CS, Tseng PH, Tu CH, et al. Increased pancreatic echogenicity with US: relationship to glycemic progression and incident diabetes. Radiology 2018; 287: 853–863.
Lim S, Bae JH, Chun EJ, et al. Differences in pancreatic volume, fat content, and fat density measured by multidetector-row computed tomography according to the duration of diabetes. Acta Diabetol. 2014; 51: 739–748.
Heni M, Machann J, Staiger H, et al. Pancreatic fat is negatively associated with insulin secretion in individuals with impaired fasting glucose and/or impaired glucose tolerance: a nuclear magnetic resonance study. Diabetes Metab Res Rev. 2010; 26: 200–205.
van der Zijl NJ, Goossens GH, Moors CC, et al. Ectopic fat storage in the pancreas, liver, and abdominal fat depots: impact on beta-cell function in individuals with impaired glucose metabolism. J Clin Endocrinol Metab. 2011; 96: 459–467.
Ou HY, Wang CY, Yang YC, et al. The association between nonalcoholic fatty pancreas disease and diabetes. PLOS ONE 2013; 8: e62561.
Oh J, Park HJ, Lee ES, et al. Severity of hyperechoic pancreas on ultrasonography as a risk factor for glycemic progression. Ultrasonography 2021; 40: 499–511.
Yamazaki H, Tsuboya T, Katanuma A, et al. Lack of independent association between fatty pancreas and incidence of type 2 diabetes: 5-year Japanese cohort study. Diabetes Care 2016; 39: 1677–1683.
Wagner R, Jaghutriz BA, Gerst F, et al. Pancreatic steatosis associates with impaired insulin secretion in genetically predisposed individuals. J Clin Endocrinol Metab. 2020; 105: 3518–3525.
Nádasdi Á, Gál V, Masszi T, et al. Combined effect of pancreatic lipid content and gene variants (TCF7L2, WFS1 and 11BHSD1) on B-cell function in middle aged women in a post hoc analysis. Diabetol Metab Syndr. 2022; 14: 106.
Xie J, Xu L, Pan Y, et al. Nonalcoholic fatty pancreas disease is related independently to the severity of acute pancreatitis. Eur J Gastroenterol Hepatol. 2019; 31: 973–978.
Takahashi M, Hori M, Ishigamori R, et al. Fatty pancreas: A possible risk factor for pancreatic cancer in animals and humans. Cancer Sci. 2018; 109: 3013–3023.
Hori M, Takahashi M, Hiraoka N, et al. Association of pancreatic fatty infiltration with pancreatic ductal adenocarcinoma. Clin Transl Gastroenterol. 2014; 5: e53.
Lesmana CR, Gani RA, Lesmana LA. Non-alcoholic fatty pancreas disease as a risk factor for pancreatic cancer based on endoscopic ultrasound examination among pancreatic cancer patients: a single-center experience. JGH Open 2017; 2: 4–7.
Mathur A, Hernandez J, Shaheen F, et al. Preoperative computed tomography measurements of pancreatic steatosis and visceral fat: prognostic markers for dissemination and lethality of pancreatic adenocarcinoma. HPB (Oxford) 2011; 13: 404–410.
Sreedhar UL, DeSouza SV, Park B, et al. A systematic review of intra-pancreatic fat deposition and pancreatic carcinogenesis. J Gastrointest Surg. 2020; 24: 2560–2569.
Petrov MS. Post-pancreatitis diabetes mellitus and excess intra-pancreatic fat deposition as harbingers of pancreatic cancer. World J Gastroenterol. 2021; 27: 1936–1942.
Mathur A, Pitt HA, Marine M, et al. Fatty pancreas: a factor in postoperative pancreatic fistula. Ann Surg. 2007; 246: 1058–1064.
Zhou L, Xiao WM, Li CP, et al. Impact of fatty pancreas on postoperative pancreatic fistulae: a meta-analysis. Front Oncol. 2021; 11: 622282.
Karasu S, Gungor F, Onak C, et al. Relation of computed tomography features of the pancreatic tissue and development of pancreatic fistula after pancreaticoduodenectomy. Clin Imaging 2021; 72: 114–119.
Lozano M, Navarro S, Pérez-Ayuso R, et al. Lipomatosis of the pancreas: an unusual cause of massive steatorrhea. Pancreas 1988; 3: 580–582.
Tahtaci M, Algın O, Karakan T, et al. Can pancreatic steatosis affect exocrine functions of pancreas? Turk J Gastroenterol. 2018; 29: 588–594.
Melitas C, Meiselman M. Metabolic pancreatitis: pancreatic steatosis, hypertriglyceridemia, and associated chronic pancreatitis in 3 patients with metabolic syndrome. Case Rep Gastroenterol. 2018; 12: 331–336.
Sun P, Fan C, Wang R, et al. Computed tomography-estimated pancreatic steatosis is associated with carotid plaque in type 2 diabetes mellitus patients: a cross-sectional study from China. Diabetes Metab Syndr Obes. 2021; 14: 1329–1337.
Della Pepa G, Brancato V, Costabile G, et al. An isoenergetic multifactorial diet reduces pancreatic fat and increases postprandial insulin response in patients with type 2 diabetes: a randomized controlled trial. Diabetes Care 2022; 45: 1935–1942.
Honka H, Koffert J, Hannukainen JC, et al. The effects of bariatric surgery on pancreatic lipid metabolism and blood flow. J Clin Endocrinol Metab. 2015; 100: 2015–2023.
Fang T, Huang S, Chen Y, et al. Glucagon like peptide-1 receptor agonists alter pancreatic and hepatic histology and regulation of endoplasmic reticulum stress in high-fat diet mouse model. Exp Clin Endocrinol Diabetes 2021; 129: 625–633.
Chavda VP, Ajabiya J, Teli D, et al. Tirzepatide, a new era of dual-targeted treatment for diabetes and obesity: a mini-review. Molecules 2022; 27: 4315.