Browse

You are looking at 1 - 10 of 3,690 items for :

  • Materials and Applied Sciences x
  • Refine by Access: All Content x
Clear All

Abstract

As a result of rainfall in large quantities, the leachate generated under the municipal solid waste (MSW) is increased, which leaks to the groundwater aquifers and pollutes it. Accurate evaluation of leachate leaks levels has long been regarded as a problem in Iraq due to a lack of reliable data and costly measuring costs. This work proposes a novel fuzzy expert system to predict the pollution status of the underground water in sandy soils. The expert system consists of two subsystems; fuzzy logic system and crisp logic system. The expert system is trained using a data set developed by finite element analysis of sandy soil subjected to contamination materials.

Open access

Abstract

The mining industry, currently undergoing profound changes, is destined to play an increasingly important economic role in the province of Quebec, Canada. Activity in this sector, its real net impact on government tax revenue, the economy, society, and the creation of wealth, is the subject of much discussion. Occupational health and safety is a major preoccupation in the mining sector, in which considerable numbers of workers suffer workplace accidents or occupational diseases due to the use of industrial chemicals, compounding the problem of exposure to noxious substances that exist naturally in mines or are produced inevitably in the course of normal mining operations. Air in mines thus can become laden with a wide variety of chemical agents, in the form of suspended solids, liquid droplets, and vapors and gases. Long-term exposure to most of these agents can seriously harm the health of mineworkers. Prevention remains the key to avoiding the social and economic consequences of these hazards and will make mining a more attractive sector for investment and employment in Canada.

The principal focus of this study, presented in two articles, is to set a preliminary theoretical framework for categorizing chemicals in terms of their effects on the health of mineworkers throughout the various phases of mining projects. The objective is to decrease (over the long term) the number of occupational diseases due to the use of chemicals by raising awareness among employers and exposed workers in the mining sector.

This research was conducted in four phases. The first article presented a review of the literature [1] on the chemical aspects of health and safety in mining in the province of Quebec. In the present article, the findings on the recurrence of health problems attributable to chemicals encountered in mines and how these effects should therefore be ranked from an occupational health and safety perspective are presented. The results show that various forms of dermatitis are the most recurrent health and safety risk.

Open access
International Review of Applied Sciences and Engineering
Authors:
Ammar Al-Jodah
,
Saad Jabbar Abbas
,
Alaq F. Hasan
,
Amjad J. Humaidi
,
Abdulkareem Sh. Mahdi Al-Obaidi
,
Arif A. AL-Qassar
, and
Raaed F. Hassan

Abstract

The demand for automation using mobile robots has been increased dramatically in the last decade. Nowadays, mobile robots are used for various applications that are not attainable to humans. Omnidirectional mobile robots are one particular type of these mobile robots, which has been the center of attention for their maneuverability and ability to track complex trajectories with ease, unlike their differential type counterparts. However, one of the disadvantages of these robots is their complex dynamical model, which poses several challenges to their control approach. In this work, the modeling of a four-wheeled omnidirectional mobile robot is developed. Moreover, an intelligent Proportional Integral Derivative (PID) neural network control methodology is developed for trajectory tracking tasks, and Particle Swarm Optimization (PSO) algorithm is utilized to find optimized controller's weights. The simulation study is conducted using Simulink and Matlab package, and the results confirmed the accuracy of the proposed intelligent control method to perform trajectory tracking tasks.

Open access

Abstract

An enterprise framework based on the philosophy research approach to Information System (IS) features a holistic view in an industry that allows room for technological advancement, an industry with increasing expectations and demands for IS drives towards a more integrated framework and rethinking of the concept of delivering insightful outcomes. The specific features of IS in this study focus on the information criteria for the daily assignment of the railway industry operations through an industry enterprise framework. The study objective is to provide a comprehensive understanding of emerging knowledge from structuring IS and enterprise framework stages and their mashup characteristics in designing a model-driven development framework. The outcome will be a design of a strategic performance framework for a typical strategic performance application as the most vital outcome indicators, to focus on understanding the baseline of technology revolution (Industry Revolution 5.0) achievement to measure the transformation expected and the railway industry evaluation, based on the year-on-year target will be established. The usage of decision-making systems and strategic applications has increased massively to fulfill various kinds of purposes for organizations, businesses, and individuals. In this case, a high-quality decision-making system and strategic application are required to ensure it provides the intended functionalities.

Open access

Abstract

A heat pipe is a heat conduction program that utilizes both heat permeability and regime shift concepts to transport heat effectively between 2 different lines. A heat pipe is made up of a pipe or tube and a base fluid. In practice, the heat pipe is poured into a mould that is compatible with the cooling media. These devices have found uses in a variety of fields, including space apparatus, solar energy systems, electronic equipment, and air conditioning systems, due to their simplicity of design and ease of manufacture and maintenance. Thermal performance improvement being the major concern in our project we researched different techniques. The heating surface area has a direct impact on heat transfer. Therefore, we have focused on heat enhancement by introducing grooves. Alongside we also considered using different materials for the pipe. At the end of our research, we are going to produce groove structure models with different materials and analyze them using ANSYS software and propose the best structures with highest thermal efficiency for different applications of heat pipes. This is an attempt to increase heat transmission in response to various material and structural changes. Heat transmission is improved with grooved heat pipes as well as heat transmission various with different types materials used in heat pipe.

Open access

Abstract

This paper compared the performance between Integer Order Fuzzy PID (IOFPID) and Fractional Order Fuzzy PID (FOFPID) controllers for inverted pendulum system as a controlling plant. The parameters of each controller were tuned with four evolutionary optimization algorithms (Social Spider Optimization (SSO), Swarm Optimization (PSO), Genetic Algorithm (GA), and Particle Ant Colony Optimization (ACO)). The comparisons were carried out between the two controllers IOFPID and FOFPID, as well as among the four optimization algorithms for the two controllers. The results of comparisons proved that the FOFPID controller with SSO has achieved the best time response characteristics and the least tuning time.

Open access

Abstract

Food, water, and energy scarcity threaten India's future, and they must be addressed first. To meet the country's ever-increasing population needs, agricultural productivity must be expanded. For the crop-land suitability, we have studied an area of about 6,539 km2 in Vizianagaram district. The majority of the land is used for paddy agriculture (Kharif). The crop-land suitability has been evaluated based on the different parameters identified in that study area. “Remote sensing (RS)” and “geographic information system (GIS)” were combined for the crop-land suitability using nine parameters. The slope, elevation, rainfall, soil texture, lithology, groundwater, land use–land cover (LULC), TWI, and land surface temperature are the primary criteria used to determine the crop-land suitability in the Vizianagaram district (AP). Thematic maps were created using Landsat 8 images and SRTM DEM images from USGS Earth Explorer. Based on these maps and the influence of these parameters, we may assign weights to the parameters and then rank them, the Analytic Hierarchy Process (AHP) allowing us to identify which area is more suitable for good crop productivity and which is not. In this study, the soils are divided into four categories: low suitability, moderate suitability, high suitability, and extremely high suitability. The suitability index is found to be in the range of 0–55.2%, which indicates the lack of outstanding agricultural lands in the sudy region.

Restricted access

Abstract

As of 2020, the mining industry in the province of Quebec (Canada) has been providing 16,000 jobs, the majority of these in the north part of the province and in the Abitibi-Témiscamingue region. From the exploration phase to the mining site rehabilitation phase, numerous chemical processes are used, often involving some of the most dangerous substances used on industrial scales.

The hazards associated with many of these substances are in some cases not obvious, and symptoms of exposure may take years to appear. The risks associated with the industrial use of chemicals in Canada and abroad has long preoccupied health authorities, given the severity of the diseases that can occur. In Quebec, occupational diseases associated with exposure to industrial chemicals are reaching 1,500 cases per year.

The principal focus of this study, presented in two articles, is to set a preliminary theoretical framework for categorizing chemicals in terms of their effects on the health of workers throughout the various phases of mining projects. The objective is to decrease (over the long term) the number of occupational diseases due to the use of chemicals by raising awareness among employers and exposed workers in the mining sector.

This research was conducted in four phases. The present article contains the results of the first two stages, that is, a review of the literature to catalog the industrial chemicals used in mines and to list the potential effects of exposure to them, based on Safety Data Sheets. Eighty-five (85) chemicals used in at least one mining project phase and dozens of potential effects on worker health were identified. The rest of the study is presented in a second article [1]

Open access