Browse

You are looking at 1 - 10 of 7,851 items for :

  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All

Abstract

Quinoa is a pseudocereal having outstanding nutritional profile and health-promoting biofunctional compounds. It is able to pop into an affordable, crispy, and flavourful ready-to-eat snack by conventional oil-popping method. Oil-popping is the process of frying grains in hot oil for a short time to induce vapour-driven expansion of grains. The effects of process variables on oil-popping quality of quinoa were evaluated. The conditions of processing were optimised using Response Surface Methodology. The grains (10 g) were hydrated by adding 0.1–0.3 mL of water containing a varying salt concentration of 0–1%, w/w and popped in coconut oil maintained at a popping temperature of 200–240 °C for a popping time of 10–30 s. The developed popped quinoa was analysed for popping quality indices. It was found that the increase in popping temperature, popping time, and salt concentration, and decrease in moisture level significantly decreased bulk density but increased popping yield (% popped grains), expansion ratio (degree of volume expansion), and flake size (average kernel size) of popped quinoa. Overall acceptability of popped quinoa in terms of sensory attributes was positively correlated with popping temperature and popping time. The optimised variables generated a popping yield of 75.56%, expansion ratio of 3.07, flake size of 11.58 mm3, bulk density of 0.29 g mL−1, and overall acceptability score of 8.40. A threefold expansion and a fair popping yield obtained from oil-popped quinoa offer a significant potential to generate profit for manufacturers.

Restricted access

Abstract

With the enhancement of people’s awareness of drinking health, the health factors in Wuliangye-flavour liquor is worth our attention. Bacterial communities in 4 layers of Zaopei from the same fermentation pit and amino acids as major health factors in 4 liquors directly related Zaopeis were investigated by Illumina MiSeq sequencing and liquid chromatography mass spectrometry, respectively. Results indicated that 18 amino acids were detected and 8 dominant bacteria (genus level) were observed. Meanwhile, total amino acids, 11 amino acids (Glu, Asp, Val, etc), bacterial diversity, and the percentages of Lactobacillus and Pseudomonas increased with the increase of Zaopei’s depth; 5 amino acids (Pro, Ser, Phe, etc) and the percentages of Pediococcus and Bacteroides first increased and then decreased with the increase of Zaopei’s depth. Moreover, 11 amino acids were significantly (P < 0.01) and strongly (|ρ| > 0.8) positively correlated with Lactobacillus and Pseudomonas numbers.

Restricted access

Abstract

Transcription factors of the nuclear factor kappa‐light‐chain‐enhancer of activated B cells (NF-ĸB) family control important signaling pathways in the regulation of the host innate immune system. Various bacterial pathogens in the human gastrointestinal tract induce NF-ĸB activity and provoke pro-inflammatory signaling events in infected epithelial cells. NF-ĸB activation requires the phosphorylation-dependent proteolysis of inhibitor of ĸB (IĸB) molecules including the NF-ĸB precursors through ubiquitin-mediated proteolysis. The canonical NF-ĸB pathway merges on IĸB kinases (IKKs), which are required for signal transduction. Using CRISPR-Cas9 technology, secreted embryonic alkaline phosphatase (SEAP) reporter assays and cytokine enzyme-linked immunosorbent assay (ELISA), we demonstrate that the actin-binding protein cortactin is involved in NF-ĸB activation and subsequent interleukin-8 (IL-8) production upon infection by Helicobacter pylori, Salmonella enterica and Pseudomonas aeruginosa. Our data indicate that cortactin is needed to efficiently activate the c-Sarcoma (Src) kinase, which can positively stimulate NF-ĸB during infection. In contrast, cortactin is not involved in activation of NF-ĸB and IL-8 expression upon infection with Campylobacter species C. jejuni, C. coli or C. consisus, suggesting that Campylobacter species pluralis (spp.) induce a different signaling pathway upstream of cortactin to trigger the innate immune response.

Open access

Abstract

Despite vaccine availability, the global spread of COVID-19 continues, largely facilitated by emerging SARS-CoV-2 mutations. Our earlier research documented that a specific combination of plant-derived compounds can inhibit SARS-CoV-2 binding to its ACE2 receptor and controlling key cellular mechanisms of viral infectivity. In this study, we evaluated the efficacy of a defined mixture of plant extracts and micronutrients against original SARS-CoV-2 and its Alpha, Beta, Gamma, Delta, Kappa, and Mu variants. The composition containing vitamin C, N-acetylcysteine, resveratrol, theaflavin, curcumin, quercetin, naringenin, baicalin, and broccoli extract demonstrated a highest efficacy by inhibiting the receptor-binding domain (RBD) binding of SARS-CoV-2 to its cellular ACE2 receptor by 90%. In vitro exposure of test pseudo-typed variants to this formula for 1 h before or simultaneously administrated to human pulmonary cells resulted in up to 60% inhibition in their cellular entry. Additionally, this composition significantly inhibited other cellular mechanisms of viral infectivity, including the activity of viral RdRp, furin, and cathepsin L. These findings demonstrate the efficacy of natural compounds against SARS-CoV-2 including its mutated forms through pleiotropic mechanisms. Our results imply that simultaneous inhibition of multiple mechanisms of viral infection of host cells could be an effective strategy to prevent SARS-CoV-2 infection.

Open access

Abstract

A number of methods have been applied to measure total antioxidant capacity (TAC), including FRAP, which is based on reducing the amount of iron ions in a complex compound. Researchers often use measurement of absorbance 10 min after mixing a sample with the FRAP reaction solution to calculate TAC. The FRAP solution has been shown to alter absorbance over time by ca 0.0010–0.0020 per hour, under storage conditions. This article intends to show that some substances do not fully or sufficiently react within the common analysis period. It is evident from the results that some substances react more quickly and others very slowly. Absorbance in relation to various phenols was measured. Compared to the levels of absorbance at 10 min, mean absorbance at 48 h was higher by 5,395% for vanillin, 426% for caffeic acid, 170% for sinapinic acid, 67% for gallic acid, 19% for syringic acid, and only by 4% for Trolox. Results for vanillin and caffeic acid indicate potential auto-catalysis.

Open access

Abstract

Hungarian fruit vinegars were characterised in terms of physicochemical attributes (total polyphenol content, antioxidant characteristics/FRAP, CUPRAC, ABTS/, ascorbic acid content, pH, total soluble solids), sensory profiles, and antimicrobial properties.

Both compositional and sensory profiles showed distinct patterns depending on the type of vinegar (Tokaj wine, balsamic or apple) and the additional fruit used. Balsamic vinegars maturated on rosehip, sea buckthorn, and raspberry showed outstanding antioxidant performances. Rosehip, raspberry, and quince vinegars, as well as vinegars produced from Tokaji aszú and balsamic apple obtained high scores for fruity and sweet notes.

Antimicrobial activities were tested on Gram-negative and Gram-positive organisms, including probiotic bacteria. Generally, only weak activities were obtained, which was attributed to the natural sugar content of the samples, depending on the type of the vinegar and the fruit. Similar results, but more pronounced bacterial growth inhibitions were obtained for probiotic strains, however, some probiotic strains were resistant to at least two of the vinegars. Based on these, balsamic apple, raspberry, rosehip, quince, and sea buckthorn may qualify as potential functional components of probiotic preparations containing some of the strains tested.

Open access

Abstract

Marine organisms have attracted considerable attention in recent years. In this study, peptides with osteogenic activity from Pinctada martensii were isolated and identified. Additionally, the effects of the hydrolysates on MC3T3-E1 cell proliferation and differentiation were evaluated using the MTT and alkaline phosphatase (ALP) assays, respectively. First, trypsin, pancreatin, and neutral protease were used to hydrolyse the intact shellfish. The hydrolysates with the greatest effects on osteoblast proliferation and ALP activity were separated and purified. Second, fraction WP2 was isolated and purified using a Sephadex G-25 column. WP2, which had the highest osteogenic activity, increased cell growth by 48.57 ± 0.05% and ALP activity by 6.27 ± 0.07 mU. Finally, four novel peptides were identified in WP2 (FDNEGKGKLPEEY, IVLDSGDGVTH, IVLDSGDGVSH, and SSENSDLQRQ) by Orbitrap Fusion Lumos Tribrid orbital liquid chromatography-mass spectrometry. Our findings revealed that P. martensii contains peptides with potential osteogenic activity.

Restricted access

Abstract

Aroma components of wines play an important role in the sensory quality of wines. In our paper we investigate the effect of commercially available yeast nutrients under different fermentation parameters. Caproic acid, caprylic acid, capric acid, and different fatty acid esters were used as markers of the alcoholic fermentation process. The optimal temperature for the fermentation of different white wines was at 15–16 °C, in the case of examined wines lower concentrations of fatty acids and fatty acid esters were found at this temperature. At 25–26 °C fermentation temperature very high concentrations of fatty acids and fatty acid esters were detected. Applying different nitrogen-containing wine additives we managed to achieve better aroma profiles for white wines even using musts of lower quality.

Open access

Abstract

Consumers increasingly address their attention to healthy fruits produced under organic agricultural managements. However, such produce may be less appealing in appearance influencing the purchase decisions of consumers. This research had the purpose to determine on three Italian local apple cultivars (Casciana, Rosa, Ruggine) the sensory appreciation of fruit through experiments conducted with blind (BC) and sighted (SC) consumers. The appreciation of apples differed between consumers with different visual ability. This aspect mainly concerned cvs Casciana and Rosa with contrasting fruit appearance traits. The BCs were inclined to better evaluate Casciana apples characterised by less attractive fruits. Conversely, the visual factor could have influenced the SCs’ judgment, as they appreciated Rosa more by the best outer traits of fruits. Intriguing responses were obtained when SCs were blindfolded.

Restricted access

Abstract

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RSCB PDB) provides a wide range of digital data regarding biology and biomedicine. This huge internet resource involves a wide range of important biological data, obtained from experiments around the globe by different scientists. The Worldwide Protein Data Bank (wwPDB) represents a brilliant collection of 3D structure data associated with important and vital biomolecules including nucleic acids (RNAs and DNAs) and proteins. Moreover, this database accumulates knowledge regarding function and evolution of biomacromolecules which supports different disciplines such as biotechnology. 3D structure, functional characteristics and phylogenetic properties of biomacromolecules give a deep understanding of the biomolecules’ characteristics. An important advantage of the wwPDB database is the data updating time, which is done every week. This updating process helps users to have the newest data and information for their projects. The data and information in wwPDB can be a great support to have an accurate imagination and illustrations of the biomacromolecules in biotechnology. As demonstrated by the SARS-CoV-2 pandemic, rapidly reliable and accessible biological data for microbiology, immunology, vaccinology, and drug development are critical to address many healthcare-related challenges that are facing humanity. The aim of this paper is to introduce the readers to wwPDB, and to highlight the importance of this database in biotechnology, with the expectation that the number of scientists interested in the utilization of Protein Data Bank’s resources will increase substantially in the coming years.

Open access