Browse

You are looking at 111 - 120 of 8,253 items for :

  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All

Abstract

Soil cultivation techniques can change the physical properties of soil and have the potential to influence the growth and productivity of crops. In the 2022 season, a research study was carried out on Gypsfreous soil in the College of Agriculture fields at Tikrit University. The purpose of the study was to investigate how the physical properties of the soil are influenced by three different plow types and varying plowing speeds. The study was planned using split plots within a Complete Randomized Blocks Design, with three types of plows (moldboard plow, disc plow, and chisel plow) and three tractor speeds (3.8, 5.8, and 7.6 km h−1) as the experimental treatments.

The experiment's findings indicated that the moldboard plow resulted in a greater reduction in bulk density compared to the disc plow. Consequently, the soil's bulk density decreased, and the percentage of porosity increased. On the other hand, the chisel plow had the lowest soil-specific resistance value and the highest soil volume disturbed value. The speed of operation above 3.8 km h−1 proved to be the most effective in reducing bulk soil density, increasing soil porosity, and reducing specific soil resistance. However, at a speed of 7.6 km h−1, the soil volume disturbed was significantly higher than at other speeds. Additionally, the experiment's findings demonstrated that the moldboard plow, operating at a speed of 3.8 km h−1, was significantly more effective than other methods in decreasing the soil's bulk density, increasing the porosity percentage, and reducing the specific soil resistance. Conversely, the chisel plow, working at a speed of 7.6 km h−1, had a significant advantage in achieving the highest value for the volume of soil disturbed.

Restricted access

Abstract

Pulmonary infections of patients with cystic fibrosis (CF) or in intensive care units are frequently caused by the Gram-negative opportunistic pathogen Pseudomonas aeruginosa. Since these bacteria are commonly inherently multidrug-resistant (MDR) and hence, antibiotic treatment options are limited, bacteriophages may provide alternative therapeutic and prophylactic measures in the combat of pneumonia caused by P. aeruginosa. This prompted us to perform a comprehensive literature survey of current knowledge regarding effects of phages applied against pulmonary P. aeruginosa infections. The included 23 studies revealed that P. aeruginosa specific phages lyse and eliminate the bacteria even in case of biofilm production in vitro, whereas application to mice and men resulted in mitigated P. aeruginosa induced clinical signs and enhanced survival. Besides distinct host immune responses, no major adverse effects limiting therapeutic and/or prophylactic phage application were noted. However, the immune system and antibiotics generate synergies with phages due to the mutable sensitivity of P. aeruginosa. In conclusion, results summarized in this review provide evidence that phages constitute promising alternative treatment options for lung infections caused by MDR P. aeruginosa. Further studies are needed, however, to underscore the efficacy and safety aspects of phages application to infected patients including immune-compromised individuals.

Open access

Abstract

Aim

The ability of neutrophil CD16 (nCD16) expression to predict outcome in complicated intra-abdominal infections (cIAIs) has not yet been studied; therefore we aimed to evaluate its potential prognostic value in such patients.

Methods

Between November 2018 and August 2021 a single-center prospective study was performed in the Department of Surgical Diseases at a University Hospital Stara Zagora. A flow cytometry was used to measure the levels of nCD16 before surgery and on the 3rd postoperative day (POD) in 62 patients with cIAIs.

Results

We observed a mortality rate of 14.5% during hospitalization. Survivors had significantly higher perioperative expression of nCD16 than non-survivors (P = 0.02 preoperatively and P = 0.006 postoperatively). As predictor of favorable outcome we found a good predictive performance of preoperative nCD16 (AUROC = 0.745) and a very good predictive performance of postoperative levels (AUROC = 0.846). An optimal preoperative threshold nCD16 = 34.75 MFI permitted prediction of survival with sensitivity and specificity of 66.7% and 77.8%, respectively. A better sensitivity of 72.5% and specificity of 85.7% were observed for threshold = 54.8 MFI on the 3rd POD.

Conclusion

Perioperative neutrophil CD16 expression shows a great potential as a predictor of favorable outcome in patients with cIAIs.

Open access
European Journal of Microbiology and Immunology
Authors:
Alma Rosa Pérez-Álamos
,
Marisela Aguilar-Durán
,
Sergio Estrada Martínez
,
Agar Ramos-Nevárez
,
Carlos Alberto Guido-Arreola
,
Antonio Sifuentes-Álvarez
,
Sandra Margarita Cerrillo-Soto
,
Raúl Graciano Ibarra
, and
Cosme Alvarado-Esquivel

Abstract

We aimed to determine the association between the seropositivity to Toxoplasma gondii and the ABO and Rh blood groups in 2,053 people. ABO and Rhesus blood groups and anti-T. gondii IgG and IgM antibodies were determined using commercially available assays. Of the 2,053 people studied, 171 (8.3%) were positive for anti-T. gondii IgG antibodies. Sixty-five (38.0%) and 36 (21.1%) of these 171 individuals had high anti-T. gondii IgG antibody levels (≥150 IU mL−1) and anti-T. gondii IgM antibodies, respectively. We found the following prevalences of T. gondii infection among the ABO groups: 8.5% in group A, 4.3% in group B, 4.7% in group AB, and 8.9% in group O (P = 0.19). The prevalences of T. gondii infection among Rh groups were: 8.4% in the Rh-positive group and 7.1% in the Rh-negative group (P = 0.58). Logistic regression analysis showed that the frequencies of ABO and Rh blood groups were similar (P > 0.05) among people with positive and negative serology for anti-T. gondii IgG antibodies, with high (≥150 IU mL−1) and lower (<150 IU mL−1) levels of anti-T. gondii IgG antibodies, and with positive and negative serology for anti-T. gondii IgM antibodies. Results does not support an association between T. gondii infection and ABO and Rh blood groups.

Open access

Abstract

The aim of this study was to optimise the microencapsulation efficiency of propolis phenolic compounds by double emulsion solvent evaporation technique (W1/O/W2). The solvent/sample ratio and the polymer and surfactant concentration parameters were optimised using response surface methodology (RSM) through Box–Behnken Design (BBD). For each parameter studied, total phenolic content encapsulation efficiency (TPCEE), free radical scavenging activity (DPPH), and ferric reducing antioxidant power (FRAP) were evaluated. The results showed that the optimal parameters were: 31.60 mg mL−1 for sample/solvent ratio, 606.28 mg mL−1 for poly(ε-caprolactone) (PCL) concentrations, and 2.05 g mL−1 for poly(vinyl alcohol) (PVA) concentration. The optimum values obtained were: 84.62% for encapsulation efficiency of phenolic content, 51.89% for DPPH, and 48,733 mg Trolox Equivalent/100 g dry weight for FRAP. The experimental checking of results revealed the validity of elaborated models and their suitability for the prediction of both responses. The developed mathematical models have expressed a high level of significance through RSM optimisation processes for phenolic antioxidants of propolis.

Restricted access

Abstract

Platycranus metriorrhynchus Reuter, 1883, the first representative of the predominantly Holomediterranean plant bug genus, Platycranus Fieber, 1870 is reported as a new element of the Hungarian true bug fauna. Diagnostic characters and bionomics of the species are discussed.

Open access

Abstract

“Feed the global population and regenerate the planet.”

The conditions necessary for the implementation of the above commonly used slogan did not exist 10–15 years ago. We did not have access to the information and databases that would have allowed us to increase yields for the purpose of feeding the growing population. While increasingly meeting sustainability requirements and regenerating the Earth. Anthropocentrism, the belief that humans are superior to everything else, benefits humans by exploiting human greed and ignorance, which is a dead end for both individuals and societies. Only humans can ignore the dynamic equilibrium processes of nature and disregard the consequences that adversely affect future generations. Ecocentric agricultural practices have several prerequisites. It is important for the academic sphere to recognize its significance. Another fundamental challenge is the continuous monitoring of the production unit and its close and distant environment for the purpose of decision preparation using Big Data. The Internet of Things (IoT) is a global infrastructure that represents the network of physical (sensors) and virtual (reality) “things” through interoperable communication protocols. This allows devices to connect and communicate using cloud computing and artificial intelligence, contributing to the integrated optimization of the production system and its environment, considering ecocentric perspectives. This brings us closer to the self-decision-making capability of artificial intelligence, the practice of machine-to-machine (M2M) interaction, where human involvement in decision-making is increasingly marginalized. The IoT enables the fusion of information provided by deployed wireless sensors, data-gathering mobile robots, drones, and satellites to explore complex ecological relationships in local and global dimensions. Its significance lies, for example, in the prediction of plant protection. The paper introduces small smart data logger robots, including the Unmanned Ground Vehicles (robots) developed by the research team. These can replace sensors deployed in the Wireless Sensor Net (WSN).

Open access

Abstract

Human infections with the food-borne zoonotic enteropathogen Campylobacter jejuni are increasing globally. Since multi-drug resistant bacterial strains are further on the rise, antibiotic-independent measures are needed to fight campylobacteriosis. Given its anti-microbial and anti-inflammatory properties the polyphenolic compound resveratrol constitutes such a promising candidate molecule. In our present placebo-controlled intervention trial, synthetic resveratrol was applied perorally to human gut microbiota-associated (hma) IL-10−/− mice starting a week before oral C. jejuni infection. Our analyses revealed that the resveratrol prophylaxis did not interfere with the establishment of C. jejuni within the murine gastrointestinal tract on day 6 post-infection, but alleviated clinical signs of campylobacteriosis and resulted in less distinct colonic epithelial apoptosis. Furthermore, oral resveratrol dampened C. jejuni-induced colonic T and B cell responses as well as intestinal secretion of pro-inflammatory mediators including nitric oxide, IL-6, TNF-α, and IFN-γ to basal levels. Moreover, resveratrol application was not accompanied by significant shifts in the colonic commensal microbiota composition during campylobacteriosis in hma IL-10−/− mice. In conclusion, our placebo-controlled intervention study provides evidence that prophylactic oral application of resveratrol constitutes a promising strategy to alleviate acute campylobacteriosis and in consequence, to reduce the risk for post-infectious autoimmune sequelae.

Open access

Abstract

Hungary is a Central European country that is rich in medicinal and aromatic wild plant species; in rural livelihoods, the collection, use, process, and trade of these plants are traditionally important contributors. However, due to several recent changes touching the sector, the natural ecosystems, biodiversity, and collectors - who generally belong to poorer social groups – are affected negatively.

The paper aims to introduce the Hungarian herbal sector from a holistic perspective, including its economic, environmental, and human dimensions, with a particular focus on sustainability. In this context, the purpose of the article is to discover this field as comprehensibly as possible and present it from both theoretical and practical aspects. Another objective is to collect the best practices and feasible solutions from the field in connection with promoting a harmonious, as well as economically prosperous relationship between nature and local people. This integrated approach helps show the industry's strengths and advantages, as well as its weaknesses and challenges. Based on the findings, the paper attempts also to propose some recommendations for the future.

Open access
Acta Alimentaria
Authors:
X. Bai
,
H.F. Gao
,
X. Li
,
Y.L. Li
,
M.Z. Lan
,
L. Li
,
Z.D. Zhao
,
Z.B. Li
, and
J. Wang

Abstract

As research advances, it is generally acknowledged that non-Saccharomyces yeast contribute to the addition of aromatic compounds during mead fermentation. In this experiment, eight different non-Saccharomyces strains and Saccharomyces cerevisiae co-fermentation, their aroma composition, and basic physicochemical parameters were investigated. More than 30 compounds with favourable impact were discovered using solid-phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS). Co-fermentation of non-Saccharomyces spp. and S. cerevisiae can affect the concentration of volatile compounds, so that the mead presents different aroma characteristics. Co-fermented meads of Wickerhamomyces anomalus strains and S. cerevisiae (Wa 27-Sc and Wa 5-Sc) had higher alcohol, acids, aldehyde, and ester concentrations than those fermented with S. cerevisiae alone. In terms of taste, Wa 27-Sc was superior to Wa 5-Sc. Overall, the Wa 27-Sc received the highest score for its strong secondary aroma and good mouthfeel. The results show that the W. anomalus Wa 27 strain has a good potential to produce high quality mead.

Restricted access