Browse
Abstract
The present study aims to determine the effects of blending cementitious materials on the mechanical and durability properties of high-performance concrete (HPC). Densified silica fume and fine-grounded metakaolin are used as supplementary cementitious materials (SCMs). A total of 16 mixes containing both binary and ternary blending of SCMs were chosen for w/b ratios of 0.4 and 0.3 respectively. The hardened properties tested for the HPC mixes were compressive strength at 7, 28, and 90 days, flexural strength at 28 days, and modulus of elasticity at 28 days. Maximum strength gains up to 15%, 38%, and 23% for compression, flexure, and elastic modulus were observed in ternary mixes compared to binary mixes. Stress-strain behaviour of ternary mixes indicates increased tolerance of stress for the least amount of strain in the specimens. Based on the experimental results, empirical relations were developed and checked with the existing codes and by earlier researchers. The durability properties tested for HPC were water absorption at 28 days, acid attack, and sulphate attack at 28, 56, and 90 days. Ternary mixes improved the pore structure of HPC, resulting in a 56% reduction in water absorption and a 34% reduction in compressive strength loss due to immersion in 5% H2SO4 at 90 days. The findings of the study endorse that ternary blending of SF and MK can improve the engineering properties of HPC, and a mix containing SF 10% and MK 10% is recommended for the best results.
Abstract
A railway on 4 m height embankment is being built in the south of Iraq. The railway alignment is extending on a compressible soil experienced impermissible settlement according to the results of soil investigation of the soil at the project site. A trial for reducing the settlement was done adopting sand piles. Nonlinear analysis was conducted to evaluate the settlement of soil before and after using the proposed technique.
The results indicated that without any improvement, the expected total settlement of the railway embankment on the compressible clay layer is 170.2 mm. By inserting granular piles of diameter 0.3 m, it was obtained settlement decreases to 88.7 mm with reduction being in range of ∼48%.
Abstract
The efficiency of using photovoltaic panels significantly depends on the climatic conditions and the power of the consumer. The evaluation of the efficiency of using the battery of the photovoltaic panel depending on the climatic conditions and the power of the consumer was carried out by the method of simulation modeling. A new type of storage battery allows to accumulate excess and compensate for the energy deficit due to the capacity of the batteries, and in case of their complete discharge - due to connection to other sources of electrical and thermal energy. The temperature field on the surface of the solar panel is constructed based on numerical simulation. The temperature ranges from +70.4 to +127.5 °C. In the main area of the panel, the heat flow ranged from 3,200 to 7000 W m−2.
Abstract
Speech scrambling aims to distort speech signals to prevent unauthorized listeners from understanding them, but conventional techniques are vulnerable to attacks. Therefore, more robust and secure speech scrambling algorithms are needed to ensure sensitive communication security. A proposed scheme uses a particle swarm optimization algorithm to generate a random key and optimize the level of noise in the scrambled signal, along with two transformations Multiwavelet and Arnold techniques to improve complexity and security. The proposed algorithm has been evaluated using various performance measurements and has demonstrated superior encryption performance than other similar audio encryption schemes with key space equal to 128 × 2.718. Further research and development in speech scrambling are essential to guarantee secure communication in sensitive contexts such as military and intelligence.
Abstract
With the development of society and economy, people pay more and more attention to thematic landscape architectural design featuring various cultures. Landscape architectural design is no longer only satisfied with the standardized, identical design style, but should focus on some specific cultural communication functions. In the thematic landscape architectural design, the use of cultural symbols can reflect the characteristics of the park. Through some research and practical design, the design method of using cultural symbols in landscape architectural design is summarized: from finding cultural elements to design language transformation.
Abstract
This study presents the frequency control of hybrid deregulated power system. The power system is supplied with appropriate system non-linearity's for practicality. A resilient model predictive control based two degree of freedom proportional integral derivative controller is designed. The Covid-19 based optimization algorithm is applied for optimization purpose. The impact of solar and wind on system dynamics are also examined. Further, the capacitive energy storage is also incorporated to check its influence. The distribution companies' participation matrix changes with market fluctuations, so the matrix is varied to check its impact. Lastly, sensitivity assessment is performed to analyze the strength of proposed controller optimized gains achieved under nominal conditions.
Abstract
The application of natural ventilation strategies in high-rise office buildings is considered one of the most promising trends to address high energy performance and enhance the indoor thermal comfort levels in interior office spaces. In this regard, this study attempts to assess the potential of natural ventilation strategies of a specific, previously investigated, envelope design of a high-rise office building located in a temperate climate zone. Different summer natural ventilation approaches were tested using the building energy simulation program IDA ICE 4.8, evaluating thermal comfort and energy demand. The findings indicated that considerable energy savings can be achieved, compared to conventional mechanical ventilation and air conditioning systems.
Abstract
Previous studies introduced the shiftability condition for successful gearshift, based on the dog clutch kinematics model containing several parameters. This study analyzes the effect of these parameters on the dog clutch shiftability. A method to study the impact of parameters is proposed. The influence of chosen parameter domains is shown. Their influence is recognized based on the shiftability map and the engagement probability. The initial relative position showed a periodic effect within one pitch region. The teeth number, axial speed, and the backlash positively affected the engagement probability, while the mismatch speed and the overlap distance showed a negative effect. The analysis showed lower limit values for the axial speed and the backlash but higher limit values for the mismatch speed and the overlap distance.
Abstract
The current research aimed to obtain mean pressure distribution over an air-inflated membrane structure using Computational Wind Engineering tools. The steady-state analysis applied the Reynolds-Averaged Navier-Stokes equations with the
Abstract
Due to the increase in earthquake activity in Iraq and Middle East during the last two decades, the study and understanding of probable destructive action and the best method to mitigate this effect became more important. So, many improvements and mitigation methods can be used. In this study, the use of permeation grout technique was adopted to prevent the existing soil condition in urban area by using cement kiln dust and bentonite clay. The tests were executed by using 1 g shaking table apparatus to simulate a sinusoidal motion (vibration) at specified different frequencies. The liquefaction phenomena were observed for loose saturated sand at 60 s, 25 s, and 10 s for 0.5 Hz, 0.75 Hz, and 1 Hz, respectively. After mitigation process, the soil liquefaction did not occur until 100 s, 60 s, and 30 s, for the same mentioned frequencies. Besides, the use of cement kiln dust decreases the liquefaction potential and increase the factor of safety.