Browse

You are looking at 141 - 150 of 2,340 items for :

  • Biology and Life Sciences x
  • Materials and Applied Sciences x
  • Refine by Access: All Content x
Clear All
Acta Alimentaria
Authors:
S. Omar
,
R. Abd Ghani
,
H. Khaeim
,
A.H. Sghaier
, and
M. Jolánkai

Abstract

Nitrogen (N) is one of the most essential nutrients affecting the yield and quality of maize (Zea mays L.). A field experiment was conducted at the experimental plot of the Department of Agronomy, The Hungarian University of Agriculture and Life Sciences, Hungary, to investigate the effect of nitrogen fertilisation on the yield and quality of maize. The experimental site included four observation plots with a net of 2 × 5 m size. Four N levels of T1, T2, T3, and T4 were sprayed at indicated plants in four replications according to treatment viz. 0, 50, 100, and 150 kg N ha−1. Nitrogen application in general does not significantly affect maize yield, its components, or grain quality. However, out of the four N treatments, the optimal N application between 50–100 kg N ha−1 potentially increased the yield, also the total expression of protein and starch contents in maize can be achieved with the right amount of N fertiliser, indicating that the treatment could produce a high grain yield as well as high protein and starch contents. Good N fertilising practice will boost the maize's nutritional value and make it more significant in the agriculture in the future. In addition, more research and assessment are essential to acquire the most benefit from the effect of optimal N application on maize yield and quality, and the findings could be beneficial to researchers and growers.

Open access
Agrokémia és Talajtan
Authors:
Norbert Túri
,
János Körösparti
,
Balázs Kajári
,
György Kerezsi
,
Mohammed Zain
,
János Rakonczai
, and
Csaba Bozán

Due to extreme meteorological and soil hydrological situations the agricultural production security is highly unpredictable. To release the extent and duration of inland excess water (IEW) inundations or two-phase soil conditions during the period intended for cultivation, subsurface drainage (SD) has been used as a best practice in several countries. SD interventions took place between 1960’s and 1990 in Hungary. After 1989, land ownership conditions changed, thus professional operation and the necessary maintenance of the SD networks designed as a complex system became insignificant. In this paper, our aim was to present the IEW hazard in one of the most equipped areas by SD in Hungary. The occurrence frequency of IEW inundations in drained and non-drained (control) areas in different time intervals were compared. According to our results, we could state that the frequency of IEW on the subsurface drained areas was moderately lower in only a few periods compared to the control areas. IEW hazard of the arable areas at the Körös Interfluve was classified as nonhazarded in 52.7% of the area. Another 38.2% were moderately hazarded, 8.26% of the lands were meanly hazarded and less than 1% were highly hazarded area by IEW.

Open access

The Westsik’s long-term crop rotation experiment was set up in 1929 at the Nyíregyháza Experimental Station (NE Hungary) on a slightly acidic Arenosol. Besides fallow crop rotation (CR), effects of different organic amendments (lupine as green manure, lupine as main crop, straw manure, and farmyard manure (FYM) were studied with or without N or NPK-fertilizers. The crop rotation consisted of rye, potato, lupine, and oat with common vetch. The soil of potato plots was analysed in 2019 at the 90th anniversary of Westsik’s crop rotation experiment.

The following chemical and microbiological soil parameters were determined: soil pH, available nutrient contents, organic carbon (OC) and nitrogen (ON) contents, microbial biomass carbon (MBC) and nitrogen (MBN), soil respiration, net nitrification, and activity of some soil enzymes.

In the CRs, the soil pHH2O varied from acidic to weakly alkaline and it largely differed from pHKCl. The results showed a significant increase in the content of nitrate, available phosphorus and potassium in most of the fertilized plots. Applying straw, green manure, or FYM significantly increased the OC and ON contents. The total count of cultivable bacteria increased upon the application of the organic manures. Combined application of straw manure and N-fertilization heavily improved the abundance of the microscopic fungi.

While all the applied organic manures significantly enhanced the MBC, the MBN increased only by the green manure amendment. Our results revealed higher soil respiration rate in the plots receiving straw or FYM than in the control. Both green manure and FYM elevated the net nitrification rate. Phosphatase, saccharase, urease, and dehydrogenase enzymes showed a hesitating response to the manure application in the different CRs.

The soil respiration and dehydrogenase activity correlated to most of the measured chemical parameters. Among microbiological properties, the MBC and MBN, as well as dehydrogenase and other enzyme activities displayed a positive correlation. Results proved the need for the exogenous application of organic matter in the form of organic manures to enhance the nutritional status and health of the soil.

Open access

Greenhouse plastic contaminations in agricultural soils were studied to quantify and examine the macroplastic and microplastic contaminants on the soil surface, soil profile, and groundwater under greenhouse farmland. Random sampling was used to select three areas in a greenhouse farm where macroplastic and microplastic data were collected. Four composite samples were collected from shallow (0–20 cm) and deep (20–40 cm) soils for each sampling point, respectively. Three soil profiles were dug, and samples were collected at intervals of 20 cm. Groundwater samples were also collected from the same profiles at a depth of 100 cm. Microplastics were extracted using predigestion of organic matter with 30% H2O2 and density separation with ZnCl2. The total mass of macroplastics in the greenhouse farmland was 6.4 kg ha–1. Polyethylene and polyvinyl chloride were the dominant plastic structures, and the dominant sizes were 1–5 and 0.5–1.0 cm, respectively. Overall, the average abundance of microplastics in the greenhouse soil was 225 ± 61.69 pieces/kg, and the dominant size structure was 2–3 mm. The average microplastic concentrations at depths of 0–20 and 20–40 cm were 300 ± 93 and 150.0 ± 76.3 pieces/kg, respectively. The average microplastic concentration in the groundwater was 2.3 pieces/l, and fibers were the dominant plastic structure. Given that microplastics were found in greenhouse soil, soil profiles, and groundwater, we recommend the careful cleaning and disposal of plastics on greenhouse farmland and further research to shed light on the level of microplastic contamination in the soil profiles and groundwater.

Open access

Abstract

Soybean seeds were germinated on an industrial scale after soaking for 0–56 h to produce a special additive for food industrial use. The germination process of three soybean varieties was monitored with near-infrared (NIR) spectroscopy based on changes in the amount, status, or character of the water. This paper evaluates the “waterless” NIR spectra of sound, germinated, and heat treated seeds to try to follow the fine details of the germination process. The germination process was analysed with the help of cluster analysis (CA), principal component analysis (PCA), and polar qualification system (PQS) as statistical and chemometric methods. PCA proved to be the most sensitive spectrum evaluation method to follow the fine details of germination. The applied NIR method is suitable for non-destructively, real-time monitoring of the non-linear nature of germination.

Open access
Acta Alimentaria
Authors:
Sz. Villangó
,
Z. Pálfi
,
X. Pálfi
,
A. Szekeres
,
O. Bencsik
, and
Zs. Zsófi

Abstract

Fungal disease resistant (PIWI) interspecific grape varieties are playing an important role as an alternative for organic wine production. Organic (bio) wines are demanded by numerous conscious consumers around the globe. They choose this kind of wines predominantly because of the absence of synthetic pesticides, fertilisers and sustainable agriculture. Resistant grape growing moreover results in additional environmental and health benefits. Nero and Bianca are among Hungary's most promising interspecific grape cultivars gaining international interest recently, there are, however, limited vitivinicultural knowledge on them. Our aim was to examine the flavonoid and anthocyanin composition for both interspecific varieties during different harvest times in two consecutive vintages. The date of harvest and vintage played a significant effect on grape and wine quality.

Open access

Abstract

Proteases hold an important position in today's world commercial enzyme market. Among various microbial producer genera, Bacillus is leading the commercial protease production. However, industry is still actively looking for new microbial protease producers with distinctive properties. Therefore, this study was undertaken for the evaluation of protease production by Bacillus megaterium DSM 32 strain in terms of its protease productivity, calculation of various production kinetics, partial characterisation of the enzyme, and modelling the protease production process. As results, the highest protease activity, specific cellular protease production rate, and protease productivity were calculated as 255.42 U mL−1, 36.2514 U g−1, and 16.1313 U mL−1 h−1, respectively, in shake flask fermentations. Partial characterisation studies showed that the enzyme has 45 °C and pH 8 as optimum working conditions, and its activity increased by 24% with the addition of 5 mM Mn+2 to the reaction medium. Additionally, the enzyme showed high stability and kept almost full activity in a cell-free medium for 20 days at 4 °C. Furthermore, modified Gompertz model provided the best fit in describing protease production with the lowest error and high fit values.

Restricted access

Abstract

Poultry processing industry produces large quantities of by products (skin, bone, and feather) that contain significant amounts of protein. The source of gelatine is of great concern for some societies including Muslims, Hindus, and Jews as gelatine is mostly obtained from porcine sources. In the present study, gelatine was obtained from chicken skin and some quality and functional features were evaluated in comparison with commercial gelatines from porcine, bovine, and piscine sources. Chicken skin gelatine formed stable foams by a foaming stability of 83.3% as well as high emulsion activity of 72.8 m2 g−1 compared to commercial gelatines. On the other hand, gel strength and viscosity of chicken skin gelatine were 307 g and 2.5 cP, respectively, and significantly lower than that of commercial gelatines due to high content of impurities. The results concluded that chicken skin may be used in gelatine manufacturing upon efficient removal of fat, which was the most abundant component in the dry matter of chicken skin.

Restricted access
Acta Alimentaria
Authors:
I. Mahmoudi
,
O. Ben Moussa
,
M. Chouaibi
,
A. Telmoudi
,
W. Boukari
, and
M. Hassouna

Abstract

Cultured buttermilk is a dairy beverage with a high nutritive value. In the current study, functional cultured buttermilk was formulated using probiotic Lactobacillus plantarum and flaxseed fortification to improve the potential health benefits. The cultured buttermilk samples were analysed for pH, lactic acidity, colour, phase separation, viscosity, microbiology and sensory properties. The results showed non-significant changes in acidity and pH. However, flaxseed fortification decreased phase separation and increased viscosity of buttermilks. In addition, a significant difference in colour attributes was revealed between samples. Sensory characteristics of cultured buttermilks were acceptable to produce a functional food.

Restricted access