Browse
A talajosztályozás megújításáról szóló eszmecseréhez azzal kívántam hozzájá-rulni, hogy a legfontosabb összefoglaló munkák alapján elemeztem az osztályozás változásait 1961 és 1999 között.
Megállapítottam, hogy a jellegzetes talajtípusok esetében a talajosztályozás egy-értelműen a diagnosztikus szemlélet irányába fejlődött, amit JASSÓ és munkatársai-nak (1989) útmutatója jelenít meg leginkább. Ez a fejlődés nem volt egyenes vona-lú, nem volt megtorpanásoktól mentes, de a ténye egyértelműen igazolható. Véle-ményem szerint ezeket az eredményeket meg kell őrizni a megújuló talajosztályo-zásban is. Az átmeneti talajtípusok esetében azonban általában kevés támpontot találunk a korábbi osztályozási rendszerekben, ami a terepi munka során útmutatást adna arra vonatkozóan, milyen talajtulajdonság milyen értéke esetén hova soroljuk a talajunkat. Ebben a tekintetben tehát nagyon fontosak és előremutatóak azok a munkák, amelyeket FUCHS és MICHÉLI (2015), MICHÉLI és munkatársai (2015), valamint FARSANG és munkatársai (2015) publikáltak.
Egyetértek a kéziratom egyik bírálójával, hogy a talajosztályozás változásainak szakmai okait részletekbe menően, eredeti vizsgálatokra alapozott publikációkra hivatkozva kell bemutatni. Ez nem volt célja a jelenlegi dolgozatnak, de bízhatunk abban, hogy a vitacikk sorozat ezeket a szempontokat is felszínre hozza.
A növényvédő szerek a talajban számos abiotikus és biotikus átalakulási folya-maton mehetnek keresztül. A talajt alkotó anyagok hatását különböző adalékanya-gokkal lehet modellezni. Kutatásunk során titán-dioxidot, agyagásványt, humusz-anyagokat, és benzofenont – töltésátviteli komplex kialakítására – használtunk erre a célra. A kutatás célja az volt, hogy felmérje a metabenztiazuron (MBTA) termé-szetes körülmények között lehetséges bomlási útvonalait.
A herbicid molekula és a benzofenon között kialakult töltésátviteli komplextől azt vártuk, hogy az energia transzfer hatékonyabbá tételével segítse a bomlást. A kísérletünk eredményei igazolták ezt a várakozást, mivel a metabenztiazuron bomlása a benzofenon jelenlétében volt a leggyorsabb. A huminsav eredő hatása a bomlás enyhe gátlása volt. A titán-dioxid és a montmorillonit kis mértékben növelte a metabenztiazuron fotokémiai bomlásának sebességét, de a titán-dioxid esetében ez nem tekinthető jelentős hatásnak.
A Gödöllői Agrártudományi Egyetemen 1970-ben 1 hektáros kísérleti területet hoztak létre, ahol 16 éven keresztül vizsgálták különböző műtrágyakezelések (N, P, K) kukorica monokultúrára gyakorolt hatását. Ezt követően összesen 6 t·ha-1 mennyiségű CaCO3-ot juttattak ki a kísérleti terület felére, majd 1995-ben a terület-re fehér akácot telepítettek. A munka során a nagy mennyiségű, komplex műtrágyá-zás hosszú távú hatását vizsgáltuk 20 éve telepített akácállomány szerkezeti para-métereire. Ehhez 48 mintaparcellát jelöltünk ki (4x12 műtrágya-kezelés) úgy, hogy minden kezeléscsoportból egy-egy ismétlés legyen.
A legfontosabb meghatározott paraméterek a törzsszám, a törzstávolság, a lomb-korona-záródás, a cserjeszint-záródás, a körlapösszeg, az átlagos mellmagassági átmérő, az átlagmagasság és a fatérfogat voltak. Ehhez a mintaterületen található 369 db akác mellmagassági átmérőit és 40 mintafa magasságát mértük meg.
A statisztikai elemzés során kéttényezős varianciaanalízist és korreláció-analízist alkalmaztunk.
Az eredmények alapján minden szerkezeti paraméter esetében szignifikáns kü-lönbség volt, a kezelések tehát hatással voltak az akácos szerkezetének alakulására. A lineáris korrelációvizsgálat eredményei szerint a kijuttatott tápanyagok és a me-szezés hatásai komplex formában jelentkeznek. A kijuttatott foszfor- és kálium csak a lombkorona-záródásra mutatott gyenge korrelációt. A kijuttatott nitrogén ható-anyagra sem lehet korrelációt megállapítani. Ennek oka valószínűleg az, hogy a nagy mennyiséget kapott parcellákon csökkent a légköri nitrogénfixáció. A mesze-zés hatására több helyen adódott szignifikáns különbség, tehát a kijuttatott CaCO3 hatással volt az egyes elemek felvehetőségére, így az állomány szerkezeti paraméte-reire. A meszezés hatása leginkább a növőtér nagyságában és a cserjeszint záródá-sában mutatkozik meg. A csökkent növőtér eredményeképp az egyes szerkezeti paraméterek (átlagos mellmagassági átmérő, átlagmagasságok) értékei csökkentek, ez azonban nem okozta a hektáronkénti fatérfogatok alacsonyabb értékét.
A kijuttatott műtrágyaadagok növelték a faállomány térfogatát, a termőhely mi-nősége ellenére jó-közepes fatermési osztályokat lehet megállapítani. A kis parcel-laméretek és az erdők tápanyagforgalmának sajátosságai miatt az állomány egyes paraméterei a kiegyenlítődés irányába mutatnak.
Ebben az összefoglaló cikkben bemutatjuk, hogy a ma már széleskörűen alkal-mazott nanoméretű fém-oxidok milyen hatással lehetnek a talajban élő mikroorga-nizmusokra. A nanoméretű fém-oxidok felhasználásuk során közvetlenül és közve-tetten is bekerülhetnek a talajba.
A leginkább alkalmazott és ezért környezeti kockázat szempontjából is leggyak-rabban vizsgált fém-oxidok a nZnO, a nTiO2, a nSiO2, az nAl2O3 és a nCuO. A nanoanyagokat alkalmazhatják a mezőgazdaságban is, elsősorban növényvédelmi célból. A félvezető fém-oxidokat a peszticidek lebontására is használhatják a fotokatailitikus tulajdonságuk miatt.
A talajbaktériumokra kifejtett hatásokat számos közlemény vizsgálja. Jelentősé-gük nagy, mivel alapját képezik a táplálékhálózatnak és az elsődleges szereplői a globális biogeokémiai körforgalmaknak. A táplálékláncban betöltött helyzetük mi-att szerepük lehet a fém-oxidok felhalmozódásában is, tehát mindenképp jól alkal-mazhatóak tesztszervezettként toxikológiai vagy ökotoxikológiai vizsgálatokban. A kísérletek nagyon különböző eredményeket hozhatnak függően a tesztfajtól, a használt módszertől, illetve az anyag kémiai összetételétől, mivel a nanoanyagok vizsgálatára még nem születtek egységes tesztszabványok.
A vizsgált fém-oxidok általában a baktériumok közösségének összetételére és diverzitására gyakorolnak hatást. A nZnO bakteriosztatikus hatást fejt ki vizsgált baktérium fajokra, a legtöbb kísérletben erősebb hatása volt, mint nagyszemcsés megfelelőjének ugyanabban a koncentráció tartományban.
A nTiO2 hatását egyes irodalmi adatok szerint az UV fény jelenléte befolyásolta, ennek hiányában csökken az anyag toxicitása. Ezen felül a nTiO2 hatása a talaj pH-jától és szerves anyag tartalmától is függ. A titán-dioxid is bakteriosztatikus hatást fejt ki a baktérium közösségekre. A két anyag közül azonos koncentrációban alkal-mazva a nZnO toxikusabb. A nCuO ugyanakkor mind a nZnO-nál, mind a nTiO2-nál toxikusabbnak bizonyult a kísérletek alapján.
A talajban élő mikroszkopikus gombafajoknál nem egyértelmű a nanoszemcsés anyagok hatása, a tesztfajok különböző érzékenysége és a módszertani eltérések miatt az eredmények különbözőek. A nZnO-ra a legérzékenyebb faj a Penicillium expansum, 61–91%-os növekedés gátlással. Az arbuszkuláris mikorrhiza fajoknál a nagyobb dózisban (3,2 mg·kg−1) adott nFeO szignifikáns kolonizáció csökkenést okoz.
Az eddigi kutatási eredmények alapján megállapítható, hogy a talaj mikroorga-nizmusait nagyrészt negatívan befolyásolják a nanoméretű fém-oxidok és egyértel-műen toxikusak is lehetnek a különböző baktérium- és gombafajokra. Mindenképp érdemes azonban vizsgálni a talaj mikro-, mezo- és makrofaunájára gyakorolt hatá-sokat is, hogy ezeken keresztül teljes képet kapjunk a nanoméretű fém-oxidoknak a talaj közösségekre kifejtett toxicitásáról.
A nanoanyagok talajba jutó mennyisége előreláthatólag növekszik majd a jövő-ben, tekintettel arra, hogy ezek előállítása és felhasználása egy dinamikusan fejlődő ágazat. Mivel a nanoanyagok nem kizárólag a szennyvizekből és hulladékból kerül-hetnek a környezetbe, hanem közvetlen mezőgazdasági felhasználás révén is, fontos tudnunk, hogy milyen káros hatásokkal kell számolnunk, végső soron ezek a folya-matok közvetett módon az ember jólétét, a környezet és az élelmiszerlánc biztonsá-gát is befolyásolhatják.
1992-ben mészlepedékes csernozjom vályogtalajon beállított szabadföldi kísérletben vizsgáltuk a nitrogén, réz és molibén elemek közötti kölcsönhatásokat tritikáléval. A termőhely talaja a szántott rétegben 3% humuszt, 5% körüli karboná-tot és 20% körüli agyagot tartalmazott. A talajelemzések alapján a terület jó Ca-, Mg-, K- és Mn-, kielégítő Cu-, valamint gyenge-közepes P- és Zn-ellátottságú volt. A talajvíz 13–15 m mélyen található, a terület aszályérzékeny. A tenyészidő kilenc hónapja alatt azonban 379 mm eső hullott, közepes csapadékellátottságot biztosítva a tritikálénak. A kísérletet 4N x 3Cu = 12 kezelés x 3 ismétlés = 36 parcellával állítottuk be osztott parcellás (split-plot) elrendezéssel. A N-trágyázás 0, 100, 200, 300 kg·ha-1, a Cu-trágyázás 0, 50 és 100 kg·ha-1 adagokat jelentett Ca-NH4NO3, illetve CuSO4 formájában. A kísérlet ötödik évében a 15 m hosszú parcellákat megfeleztük és 1 m-es úttal elválasztottuk. A kísérlet így sávos split-plot elrendezésűvé vált 72 parcellával (4N x 3Cu x 2Mo = 24 kezelés x 3 ismétlés). A 48 kg·ha-1 molibdént (NH4)6Mo7O24x4H2O formában alkalmaztuk.
A vizsgálat fontosabb eredményei az alábbiakban foglalhatóak össze.:
Adataink orientálhatják a szaktanácsadást a tervezett tritikále termés elemszük-ségletének számításakor.
A kovával átitatott, alig mállott riolittufát feltáró fúrásban élénk vízmozgás volt megfigyelhető a fizikai aprózódás során felnyílt kőzetrepedéseknek köszönhetően, a mérések alapján számolt hidraulikus vezetőképessége a vályog–homokos vályog fizikai talajféleségű szintekéhez hasonló.
A megjelenése alapján „vulkáni homok”-ként aposztrofált, mállott riolittufa víz-vezető képessége az előzetesen vártnál kisebb volt, nagyságrendekkel maradt el a „tényleges” homok vezetőképességétől, megjelenése jelentősen lelassította a szel-vényekben tapasztalt vízmozgást; számolt hidraulikus vezetőképessége nagyság-rendileg az agyagos vályogéhoz áll közel. A tapasztalt jelenség oka egyrészt az, hogy a mállás során a kőzetrepedések eltömődtek, eltűntek, másrészt pedig az, hogy a mállott agyagos rész a durvább szemcséjű „mállási maradék” pórusterébe üleped-ve a nedvességmozgás számára rendelkezésre álló pórusteret jelentősen lecsökken-tette.
Az eredmények azt jelzik, hogy a szőlőterületek termőhelyi adottságait meghatá-rozó tényezők értékelésénél nemcsak a felszínközelben található kőzet típusát, de annak mállottsági fokát is figyelembe kell venni.
Munkánkat a Tokaj Kereskedőház Zrt. támogatta.
Kísérleti munkánk célja volt, hogy műtrágyázási tartamkísérletben vizsgáljuk a N-, P- és K-ellátottság hatását a silócirok szárazanyag-felhalmozására és tápelem-felvételére, a silócirok trágyázási szaktanácsadásának fejlesztéséhez. A műtrágyázá-si tartamkísérletet 1989-ben állítottuk be mélyben karbonátos csernozjom réti tala-jon, 4-4 N-, P- és K-ellátottsági szinten, teljes kezelés-kombinációban, 64 kezelés-sel. A tápelem-felvételi vizsgálatokra kilenc kezelést választottunk ki. Jelen dolgo-zatban a 2002 és 2004 között végzett kísérletek eredményei szerepelnek, melyek alábbiakban foglalhatók össze:
A silócirok 7–8 leveles fejlettségében, a kelés utáni 30. napig (GS3) az összes zöldtömegnek 29%-a, míg a szárazanyagtömegnek 8%-a halmozódik fel. Az ezt követő intenzív növekedési periódusban a bugahányásig (GS5-6) a zöldtömegnek 74%-a, a szárazanyagtömegnek csak 38%-a alakul ki. Viaszérettségben (GS9) a zöldtömeg eléri maximumát. A szárazanyag-felhalmozás mintegy 60%-a a genera-tív fázisra esik.
A 2,8–3,2% humusztartalmú talajon az önmagában alkalmazott 80 kg·ha-1 adagú N-trágyázás a cirok N-tartalmát szignifikánsan nem növelte a trágyázás nélküli kezeléshez képest, de a P-kiegészítés jelentősebb nitrogénkoncentráció-növekedést eredményezett. A talaj 195–222 mg·kg-1 AL-P2O5 ellátottságánál a 80 kg·ha-1-nál nagyobb N-adag további szignifikáns nitrogéntartalom-növekedést nem váltott ki. A túlzott P- és K-ellátottság, 340 mg·kg-1 AL-P2O5 és 450 mg·kg-1 AL-K2O felett, a cirok N-tartalmát jelentősen nem módosítja.
A P-trágyázás nélküli kezeléshez képest, ahol a talaj AL-P2O5 –tartalma 120–139 mg·kg-1 volt, csak a túlzott P-ellátottság (340–360 mg·kg-1 AL-P2O5) okozott a bugahányos kezdetén és virágzáskor jelentősebb foszfortartalom-növekedést.
A jó K-ellátottságú talajon csak a cirok 7–8 leveles fejlettségében és csak a túl-zott K-ellátottság (450 mg·kg-1 AL-K2O felett) eredményezett szignifikáns kálium-koncentráció-növekedést.
A legnagyobb termést (56–58 t·ha-1 zöld) adó kezelésekben a virágzás fázisára (GS6–7) a N-nek 65–70%-át veszi fel a cirok és a szemképződésre esik az összes N-felvétel közel 1/3-a. A P-felvétel dinamikája mérsékeltebb ütemű, mint a N-felvétel. Legintenzívebb a P-felvétel a virágzás és szemképződés fázisában, amikor az összes P-nak 57%-a épült be. A cirok K-felvétele a tenyészidő első felében lé-nyegesen intenzívebb ütemű, mint a N- és P-felvétel. Virágzásban a K-felhalmozás már meghaladja az összes K-felvétel 90%-át. A vegetatív fázisban, a bugahányás kezdetéig az összes Ca-nak és Mg-nak 52%-a, míg a Fe-nak, a Mn-nak, a Zn-nek és a Cu-nek 54–58%-a halmozódik fel.
A legnagyobb zöld- (56–58 t·ha-1) és szárazanyagtermés (19–21 t·ha-1) fajlagos N-felvétele 57 kg, P-felvétele 12 kg (28 kg P2O5) és K-felvétele 55 kg (66 kg K2O) 10 t zöldtermésre számítva. A trágyázási kezelések átlagában 10 t zöldtermés elem-felvétele Na-ból 2,6 kg, Ca-ból 9,5 kg (13 kg CaO), Mg-ból 9,3 kg (15 kg MgO), Fe-ból 388 g, Mn-ból 185 g, Zn-ból 67 g és Cu-ból 21 g.