Browse

You are looking at 111 - 120 of 256 items for :

  • Biology and Life Sciences x
  • User-accessible content x
Clear All

Methicillin-resistant Staphylococcus aureus (MRSA) poses an infection risk for international military deployments. In the presented mini-review, the history of MRSA in the medical service and modern warfare is highlighted. To allow rapid diagnosis, various molecular diagnostic point-of-care solutions are available. Most evaluation studies, however, are focused on screening swabs rather than clinical materials and evaluation data from harsh environments are widely lacking. Accordingly, studies with complex sample materials under difficult environmental conditions, e.g., in the desert or in the tropics, are desirable to close this gap of knowledge regarding the diagnostic reliability of such modern molecular point-of-care devices.

Open access

Within 1 week following high-dose Toxoplasma gondii infection, mice develop lethal necrotizing ileitis. However, data from a subacute T. gondii-induced ileitis model are scarce. Therefore, mice harboring a human gut microbiota were perorally infected with one cyst of T. gondii. Within 9 days post-infection, the intestinal microbiota composition shifted towards higher loads of commensal enterobacteria and enterococci. Following T. gondii infection, mice were clinically only mildly affected, whereas ≈60% of mice displayed fecal blood and mild-to-moderate ileal histopathological changes. Intestinal inflammation was further characterized by increased apoptotic intestinal epithelial cells, which were accompanied by elevated proliferating gut epithelial cell numbers. As compared to naive controls, infected mice displayed elevated numbers of intestinal T lymphocytes and regulatory T-cells and increased pro-inflammatory mediator secretion. Remarkably, T. gondii-induced apoptotic and pro-inflammatory immune responses were not restricted to the gut, but could also be observed in extra-intestinal compartments including kidney, liver, and lung. Strikingly, low-dose T. gondii infection resulted in increased serum levels of pro- and anti-inflammatory cytokines. In conclusion, the here presented subacute ileitis model following peroral low-dose T. gondii infection of humanized mice allows for detailed investigations of the molecular mechanism underlying the “ménage à trois” of pathogens, human gut microbiota, and immunity.

Open access

Plant communities in extensive landscapes are often mapped remotely using detectable patterns based on vegetation structure and canopy species with a high relative cover. A plot-based classification which includes species with low relative canopy cover and ignores vegetation structure, may result in plant communities not easily reconcilable with the landscape patterns represented in mapping. In our study, we investigate the effects on classification outcomes if we (1) remove rare species based on canopy cover, and (2) incorporate vegetation structure by weighting species’ cover by different measures of vegetation height. Using a dataset of 101 plots of savanna vegetation in north-eastern Australia we investigated first, the effect of removing rare species using four cover thresholds (1, 5, 8 and 10% contribution to total cover) and second, weighting species by four height measures including actual height as well as continuous and categorical transformations. Using agglomerative hierarchical clustering we produced a classification for each dataset and compared them for differences in: patterns of plot similarity, clustering, species richness and evenness, and characteristic species. We estimated the ability of each classification to predict species cover using generalised linear models. We found removing rare species at any cover threshold produced characteristic species appearing to correspond to landscape scale changes and better predicted species cover in grasslands and shrublands. However, in woodlands it made no difference. Using actual height of vegetation layer maintained vegetation structure, emphasised canopy and then sub-canopy species in clustering, and predicted species cover best of the height-measures tested. Thus, removing rare species and weighting species by height are useful techniques for identifying plant communities from plot-based classifications which are conceptually consistent with those in landscape scale mapping. This increases the confidence of end-users in both the classifications and the maps, thus enhancing their use in land management decisions.

Open access

Pakistan holds the position of top chilies producers. So Capsicum annuum L. production in Pakistan should be promoted by combating against diseases. The only solution is to cultivate resistant varieties. Presently six chili varieties were treated with Fusarium oxysporum Schlecht. and screened for the most resistant and the most susceptible varieties. Representative varieties were evaluated for their biochemical and transcriptional profiles to discover the bases of antifungal-resistance. Results concluded that the most resistant variety was “Dandicut” and the most susceptible was “Ghotki”. Tannins, coumarins, flavonoids, phenolics, Riboflavins and saponins were observed in higher quantities in Dandicut as compared to Ghotki. Defense related enzymes i.e. polyphenol oxidase, phenyl ammonia lyase and peroxidase were found in elevated amounts in Dandicut than in Ghotki. Transcriptional results showed that defense related genes i.e. PR2a, acidic glucanase; Chitinase 3, acidic; Osmotin-like PR5 and Metallothionein 2b-like had higher expressional rates in Dandicut. Pearson’s correlation coefficient revealed stronger direct interaction in signal transduction and salicylic acid pathway. Resistance of chili varieties is salicylic acid based. Results obtained from this study not only help to improve chili production in Pakistan but also facilitate variety development operations. Moreover, it also constructed a scale to evaluate innate resistance among varieties.

Open access

β-Lactam antibiotics are widely used to treat urinary tract infections in Nigeria. This study aimed to determine the presence and characteristics of extended spectrum β-lactamases in commonly isolated uropathogenic Gram-negative bacteria (GNB) in Nigeria.

Fifty non-duplicate GNB isolates consisting of Escherichia coli, 19; Klebsiella pneumoniae, 21; and Pseudomonas aeruginosa, 10 were obtained from three tertiary hospitals in Nigeria. The antibiotic susceptibility testing of all isolates to a panel of antibiotics including minimum inhibitory concentrations (MICs) and extended spectrum β-lactamases was determined. Polymerase chain reactions and sequencing were used to detect β-lactam genes.

Polymerase chain reactions and sequencing identified varying extended spectrum β-lactamases (ESBLs) encoding genes for 24 isolates (48.0%). Cefotaximase-Munich (CTX-M) 15 was the dominant gene with 20/24 of the isolates positive at 83.3%; multiple genes (2 to 6 ESBL genes) were found in 20 of the isolates. The isolates encoded other genes such as CTX-M-14, 33.3%; sulfhydryl variable (SHV) variants, 58.3%; oxacillinase (OXA) variants, 70.8%; OXA-10, 29.2%; and Vietnamese extended β-lactamase (VEB) 1, 25.0%. There was no difference between the MIC50 and MIC90 of all the isolates.

The high-level multidrug resistance of uropathogens to third generation cephalosporins including other antibiotics used in this study is strongly associated with carriage of ESBLs, predominantly CTX-M-15, as well as CTX-X-M-14, OXA-10, and VEB-1.

Open access

Spindle oscillations are generated predominantly during sleep state II, through cyclical interactions between thalamocortical and reticular neurons. Inhibition from reticular cells is critical for this activity; it enables burst firing by the de-inactivation of T-type Ca2+ channels. While the effect of different channelopathies on spindling is extensively investigated, our knowledge about the role of intrathalamic connections is limited. Therefore, we explored how the connection pattern and the density of reticular inhibitory synapses affect spindle activity in a thalamic network model. With more intrareticular connections, synchronous firing of reticular cells, and intraspindle burst frequency decreased, spindles lengthened. In models with strong intrareticular inhibition spindle activity was impaired, and a sustained 6–8 Hz oscillation was generated instead. The strength of reticular innervation onto thalamocortical cells played a key role in the generation of oscillations; it determined the amount of thalamocortical cell bursts, and consequently spindle length. Focal inputs supported bursts but affected only a few cells thus barely reinforced network activity, while diffuse contacts aided bursts only when a sufficient number of reticular cells fired synchronously. According to our study, alterations in the connection pattern influence thalamic activities and may contribute to pathological conditions, or alternatively, they serve as a compensatory mechanism.

Open access
European Journal of Microbiology and Immunology
Authors: Hagen Frickmann, Thomas Köller, Ralf Matthias Hagen, Klaus-Peter Ebert, Martin Müller, Werner Wenzel, Renate Gatzer, Ulrich Schotte, Alfred Binder, Romy Skusa, Philipp Warnke, Andreas Podbielski, Christian Rückert and Bernd Kreikemeyer

Introduction: We assessed the molecular epidemiology of multidrug-resistant bacteria colonizing or infecting war-injured patients from Libya and Syria who were treated at the Bundeswehr hospitals Hamburg and Westerstede, Germany.

Methods: Enterobacteriaceae and Gram-negative rod-shaped nonfermentative bacteria with resistance against third-generation methoxyimino cephalosporins or carbapenems as well as methicillin-resistant Staphylococcus aureus (MRSA) from war-injured patients from Libya and Syria were assessed by molecular typing, i.e., spa typing for MRSA strains and rep-PCR and next-generation sequencing (NGS) for Gram-negative isolates.

Results: A total of 66 isolates were assessed – comprising 44 Enterobacteriaceae, 16 nonfermentative rod-shaped bacteria, and 6 MRSA from 22 patients – and 8 strains from an assessment of the patient environment comprising 5 Enterobacteriaceae and 3 nonfermentative rod-shaped bacteria. Although 24 out of 66 patient strains were isolated more than 3 days after hospital admission, molecular typing suggested only 7 likely transmission events in the hospitals. Identified clonal clusters primarily suggested transmission events in the country of origin or during the medical evacuation flights.

Conclusions: Nosocomial transmissions in hospital can be efficiently prevented by hygiene precautions in spite of heavy colonization. Transmission prior to hospital admission like on evacuation flights or in crises zones needs further assessment.

Open access

Reinerantha foliicola was recently described as a new epiphyllous genus and species in the Cololejeuneinae subtribe of the liverwort family Lejeuneaceae, from the montane rainforest region of Ecuador. A second locality of this unusual plant was detected in Venezuela in a rich Andean montane rainforest near Mérida, at an elevation of 2,300 m.

Open access

The use of vancomycin for treatment of serious infections caused by MRSA strains has resulted in emergence of vancomycin-resistant Staphylococcus aureus (VRSA) in clinical settings. Following our previous report of phenotypic VRSA in Nigeria, the current study attempts to determine the genetic basis underlying this resistance. Over a period of 6 months, non-duplicate clinical S. aureus isolates from 73 consecutive patients with infective conditions at Ladoke Akintola University of Technology Teaching Hospital, Osogbo were tested against a panel of eight selected antibiotics by disk diffusion test. The Epsilom test strip was used to determine vancomycin minimum inhibitory concentration (MIC) and polymerase chain reaction (PCR) assay to amplify nuc, mecA, vanA, and vanB genes. Of 73 isolates, 61 (83.6%) had MIC of ≤2 μg/ml, 11 (15.1%) had 4–8 μg/ml and 1 (1.4%) had 16 μg/ml. The mecA gene was detected in 5 (6.8%) isolates but none contained vanA or vanB genes. Both vancomycin-susceptible and intermediate isolates were resistant to multiple antibiotics, while the only vancomycin resistant isolate was resistant to all eight antibiotics. The result confirms the occurrence of phenotypic vancomycin intermediate-resistant S. aureus (VISA) and VRSA infections in Nigeria, but the molecular basis will require further investigation.

Open access

In the past, the horizontal transfer of antimicrobial resistance genes was mainly associated with conjugative plasmids or transposons, whereas transduction by bacteriophages was thought to be a rare event. In order to analyze the likelihood of transduction of antimicrobial resistance in the field of clinical veterinary medicine, we isolated phages from Escherichia coli from a surgery suite of an equine clinic. In a pilot study, the surgery suite of a horse clinic was sampled directly after surgery and subsequently sampled after cleaning and disinfection following a sampling plan based on hygiene, surgery, and anesthesia. In total, 31 surface sampling sites were defined and sampled. At 24 of these 31 surface sampling sites, coliphages were isolated. At 12 sites, coliphages were found after cleaning and disinfection. Randomly selected phages were tested for their ability of antimicrobial resistance transduction. Ten of 31 phages were detected to transfer antimicrobial resistance. These phages most often transduced resistance to streptomycin, encoded by the addA1 gene (n = 9), followed by resistance to chloramphenicol by cmlA (n = 3) and ampicillin (n = 1). This is, to the best of our knowledge, the first report on antimicrobial resistance-transferring bacteriophages that have been isolated at equine veterinary clinics.

Open access