Browse

You are looking at 111 - 120 of 159 items for :

  • Biology and Life Sciences x
  • Chemistry and Chemical Engineering x
  • Refine by Access: Content accessible to me x
Clear All

ABSTRACT

Lablab purpureus (L.) Sweet is a common bean in Asia. High protein content and similar amino acid composition with soybean makes good substitutes against dependency on imported products in Asian countries. One example of a bean product is vegetable milk. Fortification is executed to create a product, which compels our diet. Many people experience low protein and mineral intake from food. Fortification of plant origin products utilizing food waste by-products, namely eggshell waste by-product, may give an opportunity on this field. Milk created using beans is processed immediately. However, physiological process (germination) is capable of increasing its nutrition quality. This research focuses on variation of germination time: 0, 12, 24, 36, and 48 h. Protein digestibility is selected as the main parameter to consider the time. Protein, and mineral content, pH, and total soluble solid content of the milk are analyzed. Germination time of 36 h establishes sprout with digestible protein of 13.36 ± 0.59 g/100 g, milk protein content of 7.21 ± 0.06 g/100 g, pH of 6.74 ± 0.17, and total soluble solid content of 19.0 brix. The addition of eggshell extracted calcium as calcium fortification is 2% w/v, which resulted in mineral content of 276 ± 0.13 mg/100 g.

Open access
Progress in Agricultural Engineering Sciences
Authors:
Karina Ilona Hidas
,
Csaba Németh
,
Anna Visy
,
Adrienn Tóth
,
László Ferenc Friedrich
, and
Ildikó Csilla Nyulas-Zeke

Abstract

Eggs are commonly used in the food industry because of their excellent nutrient value and also for their coagulating, foaming, emulsifying, colouring and flavouring properties. Manufacturers substitute shell eggs with processed egg products, such as liquid whole egg, liquid egg yolk or albumin. They have a shelf life of a few weeks, but freezing can increase it to 1 year. However, freezing causes gelation in case of egg yolk. This process is highly dependent on the conditions of freezing and thawing.

In our study, raw liquid egg yolk was frozen and stored for 14 days at −18 °C. On days 1, 7 and 14 samples were thawed by two different methods. Denaturation temperature and enthalpy were investigated by differential scanning calorimetry. Besides, rheological properties were examined at 20 °C, Herschel–Bulkley model was fitted to flow curves of the examined samples. The dry matter content was also recorded during the experiment. Two-way ANOVA was used to analyse data.

The results of the study showed that method of thawing had no significant effect on calorimetric and rheological properties and dry matter content. In contrast, freezing and frozen storage had a significant effect on denaturation enthalpy and rheological properties.

Open access

Abstract

The statement of overheating of honey during the processing is important in quality characterization of honey products. Four Hungarian acacia honeys were heated up to 35, 40, 50, 60, and 80 °C and held in water bath for 0.5, 4 and 24 h. The electrical impedance spectrum of honeys before and after heating at room temperature (22 °C) were measured with precision LCR meters in frequency range from 30 Hz up to 30 MHz at 1 V voltage with Ag/AgCl electrodes. The spectra after open-short correction were approached with a circuit model consisting of a serial connection of two distributed elements and a resistance. The model parameters were determined. One of the resistance parameters can be used for detecting the previous heating of honey after detailed investigation of the recrystallization process following the heating. The complex electrical permittivity also was determined in the frequency range from 1 MHz up to 3 GHz.

Open access

Abstract

Excessive consumption of added sugar is associated with many health problems, for example obesity, type 2 diabetes, etc. Hence there is an urgent need for the product reformulation by total replacement or partial reduction of sugar in food industry. The aim of this research was to study the effect of sugar substitution (by stevia and xylitol) on model confectionary systems. We investigated differences in the texture properties, the viscosity and thermal properties of the blends. Based on our results, the sugar substitution affects the physical properties of the measured samples. The apparent viscosity and the texture properties were changed due to the different dry matter content in the samples. In the differential scanning calorimeter (DSC) curves the different melting of the samples were expressed according to the changes in sugar content. Further work is needed in this field to follow up the discovered changes in thermal behaviour of these mixtures.

Open access
Progress in Agricultural Engineering Sciences
Authors:
Tamás Csurka
,
Klára Pásztor-Huszár
,
Adrienn Tóth
,
Richárd Pintér
, and
László Ferenc Friedrich

Abstract

Blood coagulation is a process, which is initiated by certain physico-chemical effects. This process results in a change in the blood from the sol state, that is well suited for further processing, to gel state. 13 blood clotting factors take part in the cascade system of blood coagulation. Trisodium-citrate affects factor IV, the calcium, and prevents the change in blood texture. The effect of different concentrations of trisodium-citrate (0, 0.48, 2.4, 4.8, 9.6, 14.4, 19.2, 24 w/w%) on the texture of blood is investigated. Porcine blood was collected in 20 cm3 test tubes in a slaughterhouse directly before trisodium-citrate addition and was stored for one day under refrigerated conditions. The samples without trisodium-citrate coagulated and the samples with high trisodium-citrate (4–5 g) became solid as well because of the protein salting-out. The viscosity of successfully treated samples and the shear stress were measured with a rotational viscometer (Physica MCR 51, Anton-Paar) with concentric cylinders and Couette type method. The flow behavior of all samples could be described by the Herschel-Bulkley model. The yield point, the consistency index and the power of law index, which are determined by the equation of the model, showed that the samples with lower trisodium-citrate content coagulated “better” and the sample with high trisodium-citrate were most similar to Newtonian fluid. The results are trend-likes, but significant differences may be expected in the case of higher sample amount. The yield point of the sample, which contained 14.4 w/w% trisodium-citrate, was by 37.3% less than the sample containing 0.48% trisodium-citrate, and the consistency index of the sample with 3 g trisodium-citrate was by 20.5% higher than that of the sample with 0.48% trisodium-citrate. Thanks to these results a cheaper concentration and drying of porcine blood and blood fractions are available because no surplus water is added to the blood.

Open access

Abstract

Spray drying is a widely used process to turn slurries into dry powders and is especially important for thermally-sensitive materials, that are often found in the food or pharmaceutical industry. However, detailed insight into the drying kinetics during spray drying is difficult to investigate due to the boundary conditions in a spray drying tower. As a result, there is a lack of important information on the drying process and subsequent solidification of individual droplets. In this context, an experimental setup for a droplet positioned in a stationary ultrasonic field of an acoustic levitator is designed to enable a non-contacting measurement of the drying kinetics and the subsequent solidification process. To generate a comparable situation like in a real spray drying process, the droplet is positioned in an airflow, where air temperature, humidity, and velocity can be adjusted over wide range. Using an infrared camera to measure the surface temperature and a Complementary Metal Oxide Semiconductor (CMOS) camera for object recognition, the droplet can be observed continuously and drying kinetics of the droplet can be determined from the measured surface temperature and decreasing droplet size. Result of a 10 wt.% aqueous micro particle TiO2 suspension are reported and show that the investigated method is a very valuable and fast tool to safely scale-up spray drying systems very close to real process conditions. Especially when only small sample amounts are available in an early development stage.

Open access

Abstract

The fiber intake is an important part of the human diet. The fiber-deficient nutrition may have long-term health problems. Oat (Avena sativa) is an excellent source of fiber and it has many health benefits due to its rich vitamin and mineral composition. Oats are used as flour and flakes in the food industry. The oat-flakes can be used in a variety of cakes, but it can be also consumed as breakfast cereals or porridge.

The objective of our work was to determine the effect of the sugar content and sugar types on main sensory parameters of oat-flakes biscuit. During the experiments, six different types of biscuit were made with the addition of white or brown sugar at three different concentration levels. The moisture content, color, and the frangibility of the samples were analyzed during the 4-day storage period. The sensory evaluation of the biscuit samples was also performed on the first day of storage.

The parameters of the rupture test and color measurement did not show significant changes during the storage, but the individual types of biscuits made of different types and quantities of sugar could be well distinguished. Results of sensory evaluation showed significant differences in frangibility, structure and stickiness parameters.

Open access
Progress in Agricultural Engineering Sciences
Authors:
Dzsenifer Németh
,
Gábor Balázs
,
Zsanett Bodor
,
John-Lewis Zinia Zaukuu
,
Zoltán Kovács
, and
Noémi Kappel

Abstract

Melon (Cucumis melo L.) is an important and valuable vegetable crop that nowadays has a 550ha cultivation area in Hungary. The use of grafting for cucurbits is a growing technique of interest to the food industry. Nevertheless, for melons the practice of grafting is not widespread, in contrast grafted seedlings are widely used by the watermelon growers. On the other hand, it should be mentioned that the food quality attributes can change, due to the grafting. Globally there are not many scientific articles available in this topic. The goal of our study is to provide a systematic review of literature with emphasis on the influence of grafting on melon fruit quality variations and the major advantages of this technique. Over the last few years, the near infrared spectroscopy (NIRS) and electronic tongue method became popular to measure food attributes.

Open access

Abstract

Since significant percentage of fruits and vegetables go to waste during processing, investigation of how to improve the valuable products of extraction from the wastes is an undeniably effective way to save the planet. Beetroot (root, peel, and stalk) is a chief source of natural betalain color compounds and phenolic compounds with copious radical scavenging activity. The major emphasis of this work is to optimize process variables which are extraction time (10–60 min), operating temperature (20–50 °C), and aqueous ethanol solvent with the concentration of (25–75%) for effective extraction of valuable compounds such as betalains, total polyphenols, and antioxidant activity from beetroot peel. Spectrophotometric analysis was applied for quantification of those compounds. Amongst which, lowest solvent concentration (25% v/v) together with the highest temperature (50 °C) and extraction time (50 min) brought yielded higher results. The process optimization was carried out using Design Expert (11.0.3) statistical software. Overall, it can be noted that extraction process can be improved by controlling operating time and temperature, avoiding unnecessary overuse of costly solvent.

Open access

Abstract

Minimal processing technologies, like High Hydrostatic Pressure (HHP), heat treatments at low temperatures have an increasing role in food industry. Eggs are considered as functional foods, but for high retention of biological active compounds adequate minimal processing technologies are needed during preservation procedure. In our study, liquid egg yolk (LEY) was examined to meet consumer's expectations.

Combinations of pasteurization (57–63 °C, 5–7 min) and HHP (350–400 MPa, 5 min) were used to provide microbiological stability of LEY. After these treatments samples were examined for mesophyll aerobes and Enterobacteriaceae cell counts (using Nutrient agar an incubation of 30 °C, 48 h) and viscosity attributes (Anton Paar MCR 92).

Our results show that microbiological stability is significantly influenced by the different parameters of heat treatments and HHP. Heat treatment effected at least 3 orders of magnitude decrease in cell count. Viscosity attributes point out that higher pressure of HHP have a stronger effect on viscosity than the temperature of pasteurization.

The results point out a great opportunity for industrial use of minimal processing technologies for LEY. Microbiological safety is strongly influenced by the order of treatments, but viscosity may be independent from the order of the treatments.

Open access