Browse

You are looking at 171 - 180 of 271 items for :

  • Biology and Life Sciences x
  • User-accessible content x
Clear All

Secondary abiotic mice generated by broad-spectrum antibiotic treatment provide a valuable tool for association studies with microbiota derived from different vertebrate hosts. We here generated human microbiota-associated (hma) mice by human fecal microbiota transplantation of secondary abiotic mice and performed a comprehensive survey of the intestinal microbiota dynamics in offspring of hma mice over 18 weeks following weaning as compared to their mothers applying both cultural and molecular methods. Mice were maintained under standard hygienic conditions with open cages, handled under aseptic conditions, and fed autoclaved chow and water. Within 1 week post weaning, fecal loads of commensal enterobacteria and enterococci had decreased, whereas obligate anaerobic bacteria such as Bacteroides/Prevotella species and clostridia were stably colonizing the intestines of hma offspring at high loads. Lactobacilli numbers were successively increasing until 18 weeks post weaning in both hma offspring and mothers, whereas by then, bifidobacteria were virtually undetectable in the former only. Interestingly, fecal lactobacilli and bifidobacteria were higher in mothers as compared to their offspring at 5 and 18 weeks post weaning. We conclude that the intestinal microbiota composition changes in offspring of hma mice, but also their mothers over time particularly affecting aerobic and microaerobic species.

Open access

This study was carried out in order to investigating the effect of travelling on the transmission of tuberculosis from high- to low-burden TB countries. Mycobacteria samples isolated from patients of distinct and relatively co-related countries (Azerbaijan Republic and Tabriz [located in the northwest of Iran]) were analyzed through 15 loci MIRU-VNTR typing method. PCR was done using special primers for each of the loci; then the number of allele repeats for all loci were determined by the size of their fragments. Finally, the created numeric patterns for each isolate were analyzed and clustered, using MIRU-VNTRplus.org website. All 119 isolates dispersing at 106 distinct patterns were composed of 10 clusters with 23 members and 96 unique patterns. Nine and five loci had high and moderate discriminatory power, respectively, but only one of them was poor in clustering. The study showed that 89.08% of TB cases involved resulted from the reactivation pattern and 10.92% were related to ongoing transmission. Although Azerbaijan Republic is a higher-burden TB region than Tabriz and Azerbaijan people make frequent tours to Tabriz to receive low or free medical services, the findings showed no TB transmission from the regions at least during the year of the study.

Open access

Melanin-concentrating hormone (MCH), the neuropeptide produced mainly in the hypothalamus, plays an operative role in regulating food intake and the sleep/wake cycle. Considering that these physiological functions pursue diurnal variations, we checked whether the total hypothalamic MCH level depends on the time of the day. The aggregated MCH peptide content of the whole MCH neuron population was significantly higher at the end of the sleeping period (lights on), than at the end of the active period (lights off). This result, together with earlier observations, indicates that in contrast to the MCH gene expression, the level of MCH peptide is object of circadian variation in the hypothalamus.

Open access

The progressive rise in multidrug-resistant (MDR) bacterial strains poses serious problems in the treatment of infectious diseases. While the number of newly developed antimicrobial compounds has greatly fallen, the resistance of pathogens against commonly prescribed drugs is further increasing. This rise in resistance illustrates the need for developing novel therapeutic and preventive antimicrobial options. The medicinal herb Nigella sativa and its derivatives constitute promising candidates. In a comprehensive literature survey (using the PubMed data base), we searched for publications on the antimicrobial effects of N. sativa particularly directed against MDR bacterial strains. In vitro studies published between 2000 and 2015 revealed that N. sativa exerted potent antibacterial effects against both Gram-positive and Gram-negative species including resistant strains. For instance, N. sativa inhibited the growth of bacteria causing significant gastrointestinal morbidity such as Salmonella, Helicobacter pylori, and Escherichia coli. However, Listeria monocytogenes and Pseudomonas aeruginosa displayed resistance against black cumin seed extracts. In conclusion, our literature survey revealed potent antimicrobial properties of N. sativa against MDR strains in vitro that should be further investigated in order to develop novel therapeutic perspectives for combating infectious diseases particularly caused by MDR strains.

Open access

The nitrergic neuron population and certain aspects of their connectivity (peptidergic inputs, co-localization with GABA, synaptic target distribution) were studied in the medial septum of the rat brain. The histochemical localization of NADPH diaphorase and immunohistochemical identification of nNOS at light and electron microscopic level was applied. Double-labeling experiments with galanin and leucine enkephalin, moreover the postembedding GABA immunogold staining was also carried out. NADPH diaphorase- and nNOS-immunopositive neurons could be identified inside the borders of medial septum. Out of their peptidergic inputs galanin- and leucine enkephaline-immunopositive varicose fibers were found in close apposition with nNOS-immunopositive neurons. Based on fine structural characteristics (large indented nucleus, thin cytoplasmic rim, lack of axosomatic synapses) the nitrergic neurons are suggested to be identical with the septal cholinergic nerve cells. Their boutons established asymmetrical synapses mainly on dendritic shafts and spines, some of which were also nNOS-immunopositive. A lower amount of nNOS-immunopositive boutons of presumably extrinsic origin were found to be GABAergic.

Open access

In view of the anticipated shortage of the traditional supplies of fossil fuels, there is a great deal of interest in the production of ethanol as an alternative biofuel in recent years. The main objective of this research work was to isolate and characterize stress tolerant, high potential ethanol producing yeast strains from various fruit peel. Two yeast isolates from pineapple (Pa) and orange (Or) have been isolated, characterized on the basis of morphological and physic-chemical characters and optimized on ethanol producing capability using sugarcane molasses as substrate. Ethanol production percentage was estimated by Conway method. Isolates were thermotolerant, pH tolerant, ethanol tolerant as well as osmotolerant. They were resistant to Chloramphenicol (30 μg/disc) and Nalidixic acid (30 μg/disc). The isolates showed no killer toxin activity against E. coli. The highest production capacity of the yeasts was found to be 7.39% and 5.02% for Pa and Or, respectively, at pH 5.0, 30 °C temperature in media with an initial reducing sugar concentration of 6.5% for Pa and 5.5% for Or (shaking). Addition of metal ions increased the rate of ethanol production highest to 10.61% by KH2PO4. This study revealed that indigenous yeast isolates could be used to benefit the fuel demand and industrial alcohol industries.

Open access

Host immune responses are pivotal for combating enteropathogenic infections. We here assessed the impact of the innate receptor nucleotide oligomerization domain protein 2 (NOD2) in murine Campylobacter jejuni-infection. Conventionally colonized IL-10−/− mice lacking NOD2 and IL-10−/− controls were perorally challenged with C. jejuni strain 81-176 and displayed comparable pathogenic colonization of intestines until day 14 postinfection (p.i.). Whereas overall intestinal microbiota compositions were comparable in naive mice, NOD2−/− IL-10−/− mice exhibited less fecal bifidobacteria and lactobacilli than IL-10−/− counterparts after infection. Interestingly, NOD2−/− IL-10−/− mice were clinically more compromised during the early phase of infection, whereas, conversely, IL-10−/− animals exhibited more frequently bloody feces lateron. While colonic apoptotic cell and T lymphocyte numbers were comparable in either C. jejuni-infected mice, B lymphocytes were lower in the colon of infected NOD2−/− IL-10−/− mice versus controls. At day 14 p.i., colonic TNF and IL-23p19 mRNA levels were upregulated in NOD2−/− IL-10−/− mice only. Translocation rates of intestinal commensals to mesenteric lymphnodes and extra-intestinal compartments including liver and kidney were comparable, whereas viable bacteria were more frequently detected in spleens derived from IL-10−/− as compared to NOD2−/− IL-10−/− mice. In conclusion, NOD2 is involved during C. jejuni infection in conventionally colonized IL-10−/− mice in a time-dependent manner.

Open access

Progressive macular hypomelanosis (PMH) is a skin disorder that is characterized by hypopigmented macules and usually seen in young adults. The skin microbiota, in particular the bacterium Propionibacterium acnes, is suggested to play a role.

Here, we compared the P. acnes population of 24 PMH lesions from eight patients with corresponding nonlesional skin of the patients and matching control samples from eight healthy individuals using an unbiased, culture-independent next-generation sequencing approach. We also compared the P. acnes population before and after treatment with a combination of lymecycline and benzoylperoxide.

We found an association of one subtype of P. acnes, type III, with PMH. This type was predominant in all PMH lesions (73.9% of reads in average) but only detected as a minor proportion in matching control samples of healthy individuals (14.2% of reads in average). Strikingly, successful PMH treatment is able to alter the composition of the P. acnes population by substantially diminishing the proportion of P. acnes type III.

Our study suggests that P. acnes type III may play a role in the formation of PMH. Furthermore, it sheds light on substantial differences in the P. acnes phylotype distribution between the upper and lower back and abdomen in healthy individuals.

Open access
Cereal Research Communications
Authors: W.T. Xue, A. Gianinetti, R. Wang, Z.J. Zhan, J. Yan, Y. Jiang, T. Fahima, G. Zhao, and J.P. Cheng

Crop seeds are the main staples in human diet, especially in undeveloped countries. In any case, the diet needs to be rich not only in macro-nutrients like carbohydrates and protein, but also in micro-nutrients. Nevertheless, both the macro- and micro-nutrients presented in seeds largely vary in consequence of field and environment conditions. In this research, 60 lines of a barley RILs population segregating for the SSR marker Hvm74, which is genetically linked to the GPC (grain protein content) locus (HvNAM-1), were studied in 4 environments (two growing years and two field managements) by carrying out a comprehensive profile of seed macro- (starch, total nitrogen and total soluble protein) and micro-nutrients (phytate, phenolics, flavonoids, Pi, Zn and Fe). Under field conditions, all the components were largely affected by the environment, but TN (total nitrogen) exhibited high genotype contribution, while micro-nutrients displayed higher genotype × environments interactions (GEI) than macro-nutrients. In order to approach the effects of carbon-nitrogen (C–N) balance on other seed components, two C/N ratios were calculated: C/TN (CNR1) and C/TSP (CNR2). CNR2 exhibited stronger negative correlations with all micro-nutrients. Hence, the significant GEI and its negative relationships with CNR2 highlighted the different characters of micro-nutrients in barley seeds.

Open access
European Journal of Microbiology and Immunology
Authors: Roméo-Karl Imboumy-Limoukou, Sandrine Lydie Oyegue-Liabagui, Stella Ndidi, Irène Pegha-Moukandja, Charlene Lady Kouna, Francis Galaway, Isabelle Florent, and Jean Bernard Lekana-Douki

The analysis of immune responses in diverse malaria endemic regions provides more information to understand the host’s immune response to Plasmodium falciparum. Several plasmodial antigens have been reported as targets of human immunity. PfAMA1 is one of most studied vaccine candidates; PfRH5 and Pf113 are new promising vaccine candidates. The aim of this study was to evaluate humoral response against these three antigens among children of Lastourville (rural area) and Franceville (urban area). Malaria was diagnosed using rapid diagnosis tests. Plasma samples were tested against these antigens by enzyme-linked immunosorbent assay (ELISA). We found that malaria prevalence was five times higher in the rural area than in the urban area (p < 0.0001). The anti-PfAMA1 and PfRh5 response levels were significantly higher in Lastourville than in Franceville (p < 0.0001; p = 0.005). The anti-AMA1 response was higher than the anti-Pf113 response, which in turn was higher than the anti-PfRh5 response in both sites. Anti-PfAMA1 levels were significantly higher in infected children than those in uninfected children (p = 0.001) in Franceville. Anti-Pf113 and anti-PfRh5 antibody levels were lowest in children presenting severe malarial anemia. These three antigens are targets of immunity in Gabon. Further studies on the role of Pf113 in antimalarial protection against severe anemia are needed.

Open access