Browse

You are looking at 11 - 20 of 83 items for :

  • Mathematics and Statistics x
  • Refine by Access: Content accessible to me x
Clear All

Let ƒ be analytic in the unit disk B and normalized so that ƒ (z) = z + a2z2 + a3z3 +܁܁܁. In this paper, we give upper bounds of the Hankel determinant of second order for the classes of starlike functions of order α, Ozaki close-to-convex functions and two other classes of analytic functions. Some of the estimates are sharp.

Open access

The authors have studied the curvature of the focal conic in the isotropic plane and the form of the circle of curvature at its points has been obtained. Hereby, we discuss several properties of such circles of curvature at the points of a parabola in the isotropic plane.

Open access

Let k ≥ 1. A Sperner k-family is a maximum-sized subset of a finite poset that contains no chain with k + 1 elements. In 1976 Greene and Kleitman defined a lattice-ordering on the set Sk(P) of Sperner k-families of a fifinite poset P and posed the problem: “Characterize and interpret the join- and meet-irreducible elements of Sk(P),” adding, “This has apparently not been done even for the case k = 1.”

In this article, the case k = 1 is done.

Open access

A linear operator on a Hilbert space , in the classical approach of von Neumann, must be symmetric to guarantee self-adjointness. However, it can be shown that the symmetry could be omitted by using a criterion for the graph of the operator and the adjoint of the graph. Namely, S is shown to be densely defined and closed if and only if k+l:k,lGSGS*=.

In a more general setup, we can consider relations instead of operators and we prove that in this situation a similar result holds. We give a necessary and sufficient condition for a linear relation to be densely defined and self-adjoint.

Open access

Let X be a topological space. For any positive integer n, we consider the n-fold symmetric product of X, ℱn(X), consisting of all nonempty subsets of X with at most n points; and for a given function ƒ : XX, we consider the induced functions ℱn(ƒ): ℱn(X) → ℱn(X). Let M be one of the following classes of functions: exact, transitive, ℤ-transitive, ℤ+-transitive, mixing, weakly mixing, chaotic, turbulent, strongly transitive, totally transitive, orbit-transitive, strictly orbit-transitive, ω-transitive, minimal, I N, T T ++, semi-open and irreducible. In this paper we study the relationship between the following statements: ƒM and ℱn(ƒ) ∈ M.

Open access

Infinite matroids have been defined by Reinhard Diestel and coauthors in such a way that this class is (together with the finite matroids) closed under dualization and taking minors. On the other hand, Andreas Dress introduced a theory of matroids with coefficients in a fuzzy ring which is – from a combinatorial point of view – less general, because within this theory every circuit has a finite intersection with every cocircuit. Within the present paper, we extend the theory of matroids with coefficients to more general classes of matroids, if the underlying fuzzy ring has certain properties to be specified.

Open access

In many clique search algorithms well coloring of the nodes is employed to find an upper bound of the clique number of the given graph. In an earlier work a non-traditional edge coloring scheme was proposed to get upper bounds that are typically better than the one provided by the well coloring of the nodes. In this paper we will show that the same scheme for well coloring of the edges can be used to find lower bounds for the clique number of the given graph. In order to assess the performance of the procedure we carried out numerical experiments.

Open access

This paper solves an enumerative problem which arises naturally in the context of Pascal’s hexagram. We prove that a general Desargues configuration in the plane is associated to six conical sextuples via the theorems of Pascal and Kirkman. Moreover, the Galois group associated to this problem is isomorphic to the symmetric group on six letters.

Open access

The purpose of this paper is to study the principal fibre bundle (P, M, G, π p ) with Lie group G, where M admits Lorentzian almost paracontact structure (Ø, ξ p, ηp, g) satisfying certain condtions on (1, 1) tensor field J, indeed possesses an almost product structure on the principal fibre bundle. In the later sections, we have defined trilinear frame bundle and have proved that the trilinear frame bundle is the principal bundle and have proved in Theorem 5.1 that the Jacobian map π * is the isomorphism.

Open access

Many combinatorial optimization problems can be expressed in terms of zero-one linear programs. For the maximum clique problem the so-called edge reformulation is applied most commonly. Two less frequently used LP equivalents are the independent set and edge covering set reformulations. The number of the constraints (as a function of the number of vertices of the ground graph) is asymptotically quadratic in the edge and the edge covering set LP reformulations and it is exponential in the independent set reformulation, respectively. F. D. Croce and R. Tadei proposed an approach in which the number of the constraints is equal to the number of the vertices. In this paper we are looking for possible tighter variants of these linear programs.

Open access