Browse
Abstract
The widespread misuse of antibiotics leads to a rapid development of multi-drug resistant (MDR) bacterial pathogens all over the globe, resulting in serious difficulties when treating infectious diseases. Possible solutions are not limited to the development of novel synthetic antibiotics but extend to application of plant-derived products either alone or in combination with common antibiotics. The aim of this actual review was to survey the literature from the past 10 years regarding the antibacterial effects of distinct Artemisia species including Artemisia absinthiae constituting an integral component of the Absinthe drink. We further explored the synergistic antibacterial effects of the Artemisia plant products with established antibiotics. The survey portrays the Artemisia derived compounds as potent antibacterial agents that can even restore the efficacy of antibiotics against MDR bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and MDR Escherichia coli. This, in turn, is presumably triggered in part by the interaction of the Artemisia ingredients with the efflux pumps of MDR bacteria. In conclusion, biologically active molecules in Artemisia plants enhance the antibiotic susceptibility of resistant bacteria, which provide promising future therapeutic strategies to combat MDR bacterial pathogens.
This paper contains 142 Campylopoideae records from 10 collecting trips of the author with his colleagues in the East African islands. Among the 27 taxa 15 records were new to a certain island, of which 4 were known before only from continental Africa. With these the known number of species on the Indian Ocean islands raises from 30 to 34. Observations on the ecology, distribution and illustrations of most species are also given.
Enumeration and distributional data of 28 liverworts new to Peru are presented, accompanied by taxonomic annotations, phytogeographical evaluation and illustrations. Remarkable new Peruvian records include the very rare northern Andean endemic Platycaulis renifolia as well as Frullania pearceana, hitherto known only from its type locality in Bolivia. Oil bodies are described for the first time in the genus Platycaulis and male branches are newly observed in Radula yanoella, a species hitherto known only in sterile state.
Abstract
Early diagnosis of tuberculosis (TB), followed by effective treatment, is the cornerstone of global TB control efforts. An estimated 3 million cases of TB remain undetected each year. Early detection and effective management of TB can prevent severe disease and reduce mortality and transmission. Intrinsic and acquired drug resistance of Mycobacterium tuberculosis (MTB) severely restricted the anti-TB therapeutic options, and public health policies are required to preserve the new medications to treat TB. In addition, TB and HIV frequently accelerate the progression of each other, and one disease can enhance the other effect. Overall, TB-HIV co-infections show an adverse bidirectional interaction. For HIV-infected patients, the risk of developing TB disease is approximately 22 times higher than for persons with a protective immune response. Analysis of the current TB challenges is critical to meet the goals of the end TB strategy and can go a long way in eradicating the disease. It provides opportunities for global TB control and demonstrates the efforts required to accelerate eliminating TB. This review will discuss the main challenges of the TB era, including resistance, co-infection, diagnosis, and treatment.
Abstract
Antibiotic resistance constitutes a global threat to the health care systems. The number of infections due to multidrug-resistant (MDR) bacteria increases progressively resulting in an estimated annual number of 750,000 fatal cases worldwide. Additionally, the lack of novel antibiotic compounds worsens the dilemma. Hence, there is an urgent need for alternative ways to fight antibiotic resistance. One option may be natural compounds with antibacterial properties such as hop and its biologically active ingredients which are used in traditional medicine since ancient times. This prompted us to perform an actual literature survey regarding the antibacterial properties of biologically active ingredients in hop including humulone, lupulone and xanthohumol. The 20 included studies revealed that lupulone and xanthohumol do in fact inhibit the growth of Gram-positive bacteria in vitro. In combination with distinct antibiotic compounds the hop ingredients can even exert synergistic effects resulting in enhanced antibiotic activities against defined Gram-positive and Gram-negative bacteria. In conclusion, biologically active ingredients in hop including lupulone and xanthohumol may be potential antibiotic compounds which either alone or in combination with other antibacterial substances open novel avenues in the combat of infections caused by pathogenic including MDR bacteria.
Egy köles tájfajta műtrágya-reakciójának vizsgálata
Examination of the reaction to fertilization of regional millet variety
Kutatómunkák általános célja olyan kísérletek végzése, amelyek feltárják az adott régióban perspektivikusan termeszthető fajták, illetve tájfajták optimális műtrágyázási igényeit. Tanulmányunkban a Karcagon nemesített és fenntartott ’Maxi’ köles tájfajta tápanyagreakciójának vizsgálatából származó eredményeinket mutatjuk be a módosított Országos Műtrágyázási Tartamkísérlet (OMTK) 2017. évi és az annak figyelembevételével 2021-ben beállított Műtrágyázási Kísérleti Kert (MKK) adatai alapján. A kísérleteket Karcagon, a MATE Karcagi Kutatóintézetben, egy mélyben szolonyeces réti csernozjom talajon állítottuk be. 2017-ben a módosított OMTK kezelései 4 nitrogén (40, 80, 120, 160 kg ha– 1), 4 foszfor (0, 40, 80, 100 kg ha– 1) és 3 kálium (0, 60, 90 kg ha– 1) dózis kombinációjából adódtak, illetve volt egy műtrágyázás nélküli abszolút kontroll. 2021-ben az MKK kezelései 3 nitrogén (40, 80, 120 kg ha– 1), 3 foszfor (0, 40, 80 kg ha– 1) és 2 kálium (0, 60 kg ha– 1) dózis kombinációját foglalták magukba, illetve mindegyik parcella felére növénykondicionáló szert juttatunk ki. A termesztett növény mindkét évben a karcagi nemesítésű ’Maxi’ kölesfajta volt. A különböző kezeléscsoportok termésre gyakorolt hatásának statisztikai értékelését egytényezős varianciaanalízissel végeztük el. Mindkét vizsgálati évben a 80 kg ha– 1 hatóanyag mennyiségben kijuttatott nitrogén műtrágyázás bizonyult a leginkább megfelelőnek. A magas foszfor dózisok a legtöbb esetben termésdepresszióhoz vezettek. Eredményeink alapján még a közepes – jó kálium ellátottságú karcagi talajokon is hasznos lehet a kálium kijuttatása, bár a káliumtrágyázás termésre gyakorolt hatását a varianciaanalízis nem igazolta. Az Algomel PUSH szerrel végzett növénykondicionálás statisztikailag is igazolhatóan, mintegy 10%-kal növelte a termés nagyságát. Kutatómunkánk folytatásával pontosabban meghatározható lesz számos tájfajta tápanyagreakciója és fajtaspecifikus, a helyi agroökológiai viszonyokat is figyelembe vevő tápanyag dózisok és kombinációk ajánlhatók a gazdálkodóknak.
The general objective of our research is to carry out experiments that are suitable to reveal the optimal fertilization demand of regionally bred or potentially producible crop varieties for a specific region. In our recent study, the results gained from the examination of the nutrient reaction of the regional millet variety ‘Maxi’ bred and maintained in Karcag are introduced based on the data originating from the modified Long-term National Fertilization Experiments (OMTK) in 2017 and from the Fertilization Experimental Garden (MKK) established at Karcag in 2021. Both experiments were set up in the MATE Research Institute of Karcag on a meadow chernozem soil salty in the deeper layers. In 2017, there were 4 nitrogen (40, 80, 120, 160 kg ha−1), 4 phosphorus (0, 40, 80, 100 kg ha−1), and 3 potassium (0, 60, 90 kg ha−1) dosage combinations applied and one unfertilized absolute control in the OMTK trial. In 2021, in the MKK experiment, treatments involved 3 nitrogen (40, 80, 120 kg ha−1), 3 phosphorus (0, 40, 80 kg ha−1), and 2 potassium (0, 60 kg ha−1) dosage combinations, furthermore, on half of the plots a plant conditioner was sprayed. Millet variety ‘Maxi’ bred at Karcag was the indicator crop in both years. For the statistical analysis of the effect of the various treatment groups on yields, One-way ANOVA tests were used. We considered the 80 kg ha−1 nitrogen substance dose the most suitable in both years. High dosage of phosphorus application resulted in yield depression in most of the cases. Based on our results, potassium fertilization can be effective even on the soils of Karcag with medium to good potassium supplies, though the analysis of variance did not justify the effect of K-fertilization on yields. The 10% yields increase due to plant conditioning with Algomel PUSH was statistically proven. By continuing or research, the reaction to fertilization of several regional crop varieties can be determined more precisely, and variety-specific nutrient doses and combinations can be determined and suggested to the local famers taking the regional agri-ecological conditions into consideration.
Abstract
Its ability to survive under different environmental conditions makes Listeria monocytogenes a critical concern for food safety. When the microorganisms are exposed to sublethal heat treatment above their optimum growth temperature, they increase stress adaptation for further heat treatments. In order to investigate heat stress resistance of L. monocytogenes, L. innocua as a surrogate was exposed to sublethal heat at 46 °C for 30 and 60 min, prior to heat treatment at 60 °C. There was no significant difference in D60°C values between samples exposed to sublethal heat for 30 min and non-pre-heat-treated samples (control) (P > 0.05). In comparison, sublethal heat treatment for 60 min caused a significant increase in D60°C values compared to control samples (P < 0.05). Additionally, cluster analysis of mass spectra obtained from MALDI-TOF was analysed by discriminant analysis of principal components (DAPC) for sublethal heat treatment at 46 °C for 30 min and control group to check stress response at the proteomic level. However, differentiation of stress responses by distinct clusters was not revealing.
Abstract
Gluten-free (GF) breads are often described with low quality, rapidly staling, dry mouthfeel and crumbling texture attributes. In lack of recent texture profile data on commercially available, preservative-free, freshly-baked GF bread, this study aimed to compare different types of GF products with their wheat-based counterparts during a 4-day-long storage test. Texture analysis data showed that GF loaves performed better than or comparable to the wheat-based ones in hardness, springiness and cohesiveness. Among sensorial properties mouth-feel, softness and aroma were evaluated as significantly better or similar for GF versus wheat-based products. GF cob had a saltier taste, which reduced the flavour experience. Both the texture results of the storage test and sensory data showed that the quality of GF bread products improved in recent years; they stayed comparable with their wheat-based counterparts even during a 4-day-long storage period.
Abstract
This work aimed to evaluate the effect of ethylene treatment on ripening of 1-MCP treated pear after 6 months of cold storage. Pear treated with gaseous 1-MCP at 625–650 ppb for 24 h at 0 °C was stored at 0 °C for 6 months with normal air, and treated groups were exposed to 100 ppm ethylene at 20 °C for 24 h. After that, samples were kept at 0, 10, and 15 °C for 2 weeks. Stiffness, chlorophyll fluorescence, ethylene and CO2 production of fruit were investigated during 2 weeks. Application of ethylene resumed the ripening of pear after long term storage. The results showed that fruit treated with ethylene achieved more homogeneous surface colour in comparison with non ethylene treated pears. In addition, the ethylene and carbon dioxide production of ethylene treated pears had higher values than that of control. The ethylene treatment could accelerate the softening of pear. Temperature also has significant effect on ripening during storage. This study found that ethylene treatment could accelerate the normal ripening of 1-MCP treated pears.
Abstract
This study validated the performance of the reverse transcriptase‐polymerase chain reaction (rRT-PCR) based Cepheid Xpert® Xpress SARS-CoV-2 assay against the TIB MOLBIOL E-gene/EAV, a standard laboratory rRT-PCR SARS-CoV-2 assay. Upper and lower respiratory tract samples (nasopharyngeal and nasal swabs, bronchoalveolar lavage, and tracheal aspirate) were obtained from patients suspected to have contracted COVID-19. Results from the Xpert® Xpress and standard rRT-PCR assays were compared for positive and negative agreement and analyzed for precision, reproducibility, 95% confidence intervals, and coefficients of variation. The Xpert® Xpress assay demonstrated 100% agreement with the standard lab rRT-PCR for both upper and lower respiratory tract samples. Both the Xpert® Xpress and lab rRT-CPR identified weakly positive (Ct values 35–39) sample replicates with 100% reproducibility and showed 100% precision in identifying triplicates of upper respiratory tract samples. The single-cartridge Xpert® Xpress system has a short turnaround time and can be employed to improve patient management and hospital bed allocation. Further verification of the system is required before implementation and consideration must be paid to its higher cost and impracticality for high-throughput use.