Browse

You are looking at 31 - 40 of 368 items for :

  • Architecture and Architectonics x
  • User-accessible content x
Clear All

Abstract

In this study, the mineralogical content of Abu Rusheid mylonite sample was investigated and revealed that the sample is essentially composed of quartz and feldspar (72.14% mass), muscovite (16.6% mass), and contains heavy economic polymetallic minerals of about 2.65% by mass. By studying the differences in the physical properties of this mineral content, a proposed flow sheet was set up to explain the successive physical upgrading steps for concentrating and separating the valuable minerals content and getting rid of the associated gangue minerals. Industrial, economic and strategic polymetallic minerals were identified at Abu Rusheid mylonite sample, including cassiterite, titanite, brass, kasolite, monazite, and uranothorite. A group of sulfide minerals also existed as pyrite, arsenopyrite, galena, and molybdenite in addition to the presence of fluorite and iron oxides bearing rare earth elements (REEs) and base metals. Using dry high intensity magnetic separation followed by wet gravity separation and flotation, three concentrates were obtained; heavy paramagnetic concentrate (monazite, columbite, brass, and jarosite), heavy diamagnetic concentrate (zircon, kasolite, uranothorite, cassiterite, and sulphide minerals) and muscovite concentrate for industrial uses. Physical processing of Abu Rusheid mylonite sample was carried out to produce high grade mineral concentrate used as a raw material for chemical treatment to extract economic elements that necessary for several industries.

Open access

Abstract

Previously isolated Pseudomonas lundensis CP-P-5 had antagonistic activity against Salmonella Hartford, Yersinia enterocolitica, and Escherichia coli. In this study, determination of its antagonistic mechanism and potential field of application in food industry was aimed. Using cellophane-test and microcultures of the test strain's cell-free supernatant mixed with the pathogens, our results showed that cells of P. lundensis CP-P-5 and its concentrated cell-free supernatants were effective against the foodborne bacteria, and the supernatants contained more than one compound responsible for inhibitory activity. Searching for the antagonistic compound, NaOH, protease, and heat treatments were done to the supernatants, and proteolytic activity and siderophore production were also tested using the antagonistic strain. Our results support the potential applicability of P. lundensis CP-P-5 as a bioprotective agent against foodborne pathogens in food processing environments.

Open access

Abstract

Most applications in engineering use a data acquisition device hooked up to a personal computer for data processing. Finding less costly, easily accessible and reliable devices will make personal computer (PC) based data acquisition systems less difficult. A soundcard may be used as such a device for it is standard in almost every PC. It can also process any voltage signal within its limits. This paper proposes a way to enable the PC to be used as an oscilloscope. A voltage signal is acquired via the soundcard LINE IN port. The maximum and minimum input signal amplitude requirements for the soundcard are established to be +1 V and –1 V respectively. Based on these findings, hardware circuitry is designed to clip any high amplitude input signals to the range of ±1 V while allowing low amplitude signals to go through to the soundcard unclipped. MATLAB is then employed to acquire, process and display the signal. The final output from MATLAB is compared with the original signal to determine accuracy of the designed oscilloscope. Analysis of the results obtained shows that the final oscilloscope designed enables the soundcard to process input signals with a high level of accuracy. The final design yields a hardware cost at a fraction of an iPod while providing an elegant user interface. This makes it suitable for college students, basement hackers and even professional engineers.

Open access

Abstract

The study aims to examine the effects of palm biodiesel blended with additives in the compression ignition (CI) engine. Biodiesel as fuel was limited by challenges such as lower calorific value (CV) and higher viscosity while increasing brake specific fuel consumption (BSFC) and nitrogen oxides (NOx) emissions. Nanoparticles and antioxidant additives added to biodiesel play an essential role in avoiding the hindrances of biodiesel. The antioxidants combined with biodiesel reduced NOx emissions by eliminating decomposing peroxides, free radicals, and preventing free radicals' chain reaction. The Significant characteristics of nanoparticles are high CV, high thermal conductivity, and higher surface to volume ratio. These characteristics are used to improve the CI engine's performance and emissions by using nanoparticles blended with biodiesel. Five different test blends of Diesel, B20, B20TO, B20AO, and B20AOTO were prepared. The result showed high brake thermal efficiency (BTHE) and decreased BSFC, exhaust gas temperature (EGT), hydrocarbons (HC), NOx, and HC emissions by using the B20AOTO fuel blend contrasted with other biodiesel blends.

Open access
Pollack Periodica
Authors: Ali Kareem Abdulrazzaq, György Bognár, and Balázs Plesz

Abstract

This paper presents a combined electro-thermal model to serve the aim of accurate output power prediction of photovoltaic systems, based on the concept of the thermal energy balance. The electrical sub-model is built based on fitting a surface to the current-voltage curves collected under wide range temperatures and irradiances. For this purpose, the current-voltage characteristic curves are reproduced using two different methods. The thermal sub-model considers all the effective heat transfer mechanisms to estimate the photovoltaic module junction temperature. The Newton-Raphson iterative method is used as a solving algorithm to calculate the photovoltaic junction temperature. The collected results prove the applicability of the model under a wide range of environmental conditions.

Open access

Abstract

In embedded systems that necessarily require a steady source of power and (or) attaches to a sensor(s), there are opportunities to mix small batteries to supply such power. The aim of this research is to optimize the geometry and shape of piezoelectric cantilevers to harvest more power. Several piezoelectric cantilever geometries with various shapes (rectangular, triangular, circular, and trapezoidal cross section) are tested in COMSOL multiphysics simulator to find the best geometry that provides the highest accomplishable power. The most efficient geometry was found to be conferred by the trapezoidal, cross section cantilever. Next, another improvement method was applied to maximize the harvested power of the cantilever by modifying the shape of the trapezoidal cantilever structure through increasing the number of its faces. The results demonstrated that the highest output power (36 mW) was produced by the four faces, trapezoidal cross section design of cantilever.

Open access

Abstract

This paper introduces research on magnetic fields with special attention to developing a new method for braking fast-changing alternating movements. This work is part of a research project aiming to find the most efficient and accurate method for development of linear magnetic brake for dynamic tests in industrial applications. In applications requiring precisely defined and generated characteristics of the braking force, highly reliable and accurate function between the braking force and the controlling current should be investigated.

The goal of this research is to develop accurate and reliable control methods for fast changing magnetic fields used in automatic test solutions of different devices and tools, which have been tested manually before.

Open access

Abstract

In the research projects and industrial projects severe optimization problems can be met, where the number of variables is high, there are a lot of constraints, and they are highly nonlinear and mostly discrete issues, where the running time can be calculated sometimes in weeks with the usual optimization methods on an average computer. In most cases in the logistics industry, the most robust constraint is the time. The optimizations are running on a typical office configuration, and the company accepts the suboptimal solution what the optimization method gives within the appropriate time limit. That is, why adaptivity is needed. The adaptivity of the optimization technique includes parameters of fine-tuning. On this way, the most sensitive setting can be found. In this article, some additional adaptive methods for logistic problems have been investigated to increase the effectivity, improve the solution in a strict time condition.

Open access

Abstract

Safety valves are the most important safety devices of the pressure system. For safety valves in the vast majority of cases in industrial environment, direct spring-loaded safety valves are used. The most important parameter of the equation of motion is the flow force. The main goal of the analysis was to compare the simulated flow forces with the measured results and validating the computational fluid dynamics model. Simulations were made in ANSYS 2019 R1 code for numerous fixed valve disk positions on different pressures. Results are in good agreement with the measured data.

Open access