Browse

You are looking at 41 - 50 of 391 items for :

  • Materials and Applied Sciences x
  • Architecture and Architectonics x
  • Refine by Access: Content accessible to me x
Clear All

Abstract

A new two-level hierarchical approach to control the trolley position and payload swinging of an overhead crane is proposed. At the first level, a simple mathematical pendulum model is investigated considering the time delay due to the use of a vision system. In the second level, a chain model is developed, extending the previous pendulum model considering the vibration of the suspending chain. The relative displacement of the payload is measured with a vision sensor, and the rest of the state-space variables are determined by a collocated observer. The gain parameters related to the state variables of the chain vibration are determined by the use of a pole placement method. The proposed controller is verified by numerical simulation and experimentally on a laboratory test bench.

Open access
International Review of Applied Sciences and Engineering
Authors: N. ArikaraVelan, V. Deepak, N. Dhinesh Kumar, G. Muthulingam, S. Vanitha, P. Karthigai Priya, and Sachin Sabariraj

Abstract

In this study, vermicompost is replaced for fine aggregate in geopolymer concrete (GPC). Initially mix design is made for GPC and mix proportion is proposed. The vermicompost is replaced at 5%, 10%, 15% and 20% with M sand in GPC. Result indicates the 5% replacement with vermicompost based geopolymer concrete (GPVC) has the compressive strength of 32 N mm−2 (M30 grade) whereas the compressive strength of control specimen made with GPC is 37 N mm−2. Other replacement shows 21 N mm−2, 14 N mm−2 and 11 N mm−2 respectively. The 5% replaced concrete cubes and control specimen are tested at an elevated temperature of 200°C, 400°C, 600°C and 800°C and compared with the control specimen. There is no significant difference observed in weight lost at control (GPC) and GPVC specimen. An elevated temperature, the weight loss is almost 4% at 200°C because of expulsion of water from the concrete. Afterwards only 2% weight loss is observed in remaining elevated temperature. The compressive strength loss is observed at an elevated temperature in GPC and GPVC specimen because of thermal incompatibility between aggregate and the binder. EDX results show M sand and compost contains Si, Al, C, Fe, Ca, Mg, Na and K and it is similar in the elemental composition and SEM image confirms vermicompost contains fine particles.

Open access
International Review of Applied Sciences and Engineering
Authors: N. ArikaraVelan, V. Deepak, N. Dhinesh Kumar, G. Muthulingam, S. Vanitha, P. Karthigai Priya, and Sachin Sabariraj

Abstract

In this study, vermicompost is replaced for fine aggregate in geopolymer concrete (GPC). Initially mix design is made for GPC and mix proportion is proposed. The vermicompost is replaced at 5%, 10%, 15% and 20% with M sand in GPC. Result indicates the 5% replacement with vermicompost based geopolymer concrete (GPVC) has the compressive strength of 32 N mm−2 (M30 grade) whereas the compressive strength of control specimen made with GPC is 37 N mm−2. Other replacement shows 21 N mm−2, 14 N mm−2 and 11 N mm−2 respectively. The 5% replaced concrete cubes and control specimen are tested at an elevated temperature of 200°C, 400°C, 600°C and 800°C and compared with the control specimen. There is no significant difference observed in weight lost at control (GPC) and GPVC specimen. An elevated temperature, the weight loss is almost 4% at 200°C because of expulsion of water from the concrete. Afterwards only 2% weight loss is observed in remaining elevated temperature. The compressive strength loss is observed at an elevated temperature in GPC and GPVC specimen because of thermal incompatibility between aggregate and the binder. EDX results show M sand and compost contains Si, Al, C, Fe, Ca, Mg, Na and K and it is similar in the elemental composition and SEM image confirms vermicompost contains fine particles.

Open access

Abstract

This paper presents an experimental study of abrasive waterjet turning of an extrusion aluminum alloy (AlMg0,7Si). The aim of the paper is to determine differences of two methods from the point of view of machined surface quality and the depth of penetration, i.e., the diameter of the parts after the turning process. During the experiments, the traverse speed of the cutting head and the rotation of the turned parts were changed, other parameters, like pressure of the water, abrasive mass flow rate were kept constant. Diameter and some surface roughness parameters of the test parts were measured after the machining. On the base of experimental results, advantages, and disadvantages of two methods are explained in the paper.

Open access

Abstract

The ball and Plate (BaP) system is the typical example of the nonlinear dynamic system that is used in a wide range of engineering applications. So, many researchers in the control field are using the Bap system to check robust controllers under several points that challenge it, such as internal and external disturbances. Our manuscript proposed a position control intelligent technique with two directions (2D) for the BaP system by optimized multi Fuzzy Logic Controllers (FLC’s) with Chicken Swarm Optimization (CSO) for each one. The gains and rules of the FLC’s can tune based on the CSO. This proposal utilizes the ability of the FLC’s to observe the position of the ball. At our work, the BaP system that belonged to Control Laboratory/Systems and Control Engineering department is used for real-time proposal implementation. The results have been showing a very good percentage enhancement in settling time, rise time, and overshoot, of the X-axis and Y-axis, respectively.

Open access

Abstract

Many security vulnerabilities can be detected by static analysis. This paper is a case study and a performance comparison of four open-source static analysis tools and plugins (PMD, SpotBugs, Find Security Bugs, and SonarQube) on Java source code. Experiments have been conducted on the widely used Juliet Test Suite with respect to six selected weaknesses from the official Top 25 list of Common Weakness Enumeration. In this study, analysis metrics have been calculated for helping Java developers decide which tools can be used when checking their programs for security vulnerabilities. It turned out that particular weaknesses are best detected with particular tools.

Open access

Abstract

This paper robotic process automation is highlighted in modern business environments to understand about the progression of robotic process automation and how robotic process automation has brought changes to the world of business. Adoption of robotic process automation tools has raised lots of questions, but their deployment in a business has changed the outcome of the return on investment in a business by reducing cost and time taken on repetitive tasks. The paper is differentiating robotic process automation bot from artificial intelligence and robotics for the better understanding of lay audience. The paper also gives an insight about futuristic aspects of robotic process automation and robotic process automation 2.0.

Open access
Pollack Periodica
Authors: Patrik Márk Máder, Olivér Rák, Nándor Bakai, József Etlinger, Márk Zagorácz, and István Ervin Háber

Abstract

Building information modeling is a complex and structure-based methodology. It applies predefined steps and frameworks; however, an audit procedure can be complicated and time-consuming. The steps of the evaluations are based on logical connections that also form algorithms in a manual workflow. Algorithms can be interpreted by computers with the help of software languages. A higher level of automation, more efficient workflows, and more economical and accurate results can be developed by using algorithms.

Open access
Pollack Periodica
Authors: Souphavanh Senesavath, Ali Salem, Saied Kashkash, Bintul Zehra, and Zoltan Orban

Abstract

Steel fibers recovered from recycled tires were considered for use as reinforcement in concrete to improve the tensile properties of concrete as well as being an economically viable and environmentally friendly alternative. This paper investigates the effect of purified and non-purified recycled tire steel fiber in concrete with a constant fiber proportion of 30 kg m−3 to determine properties in fresh and hardened concrete. The results indicate that concrete with purified tire fibers have better tensile properties than those with non-purified tire fibers. Density, strength, and toughness significantly increase but workability tends to decrease when using recycled tire steel fiber as reinforcement in concrete.

Open access

Abstract

In this paper a complete methodology of modeling and control of quad-rotor aircraft is exposed. In fact, a PD on-line optimized Neural Networks Approach (PD-NN) is developed and applied to control the attitude of a quad-rotor that is evolving in hostile environment with wind gust disturbances and should maintain its position despite of these troubles. Whereas PD classical controllers are dedicated for the positions, altitude and speed control. The main objective of this work is to develop a smart Self-Tuning PD controller for attitude angles control, based on neural networks capable of controlling the quad-rotor for an optimized performance thus following a desired trajectory. Many problems could arise if the quad-rotor is evolving in hostile environments presenting irregular troubles such as wind gusts modeled and applied to the overall system. The quad-rotor has to rapidly achieve tasks while guaranteeing stability and precision and must behave quickly with regards to decision making fronting turbulences. This technique offers some advantages over conventional control methods such as PD controllers. Simulation results are achieved with the use of Matlab/Simulink environment and are established on a comparative study between PD and PD-NN controllers founded on wind disturbances application. These obstacles are applied with numerous degrees of strength to test the quad-rotor comportment. Experimental results are reached with the use of the V-REP environment with which some trajectories are tracked and then applied on a BLADE Inductrix FPV+. These simulations and experimental results are acceptable and have confirmed the efficiency of the proposed PD-NN approach. In fact, this controller has fairly smaller errors than the PD controller and has an improved ability to reject troubles. Moreover, it has confirmed to be extremely vigorous and efficient fronting disturbances in the form of wind disturbances.

Open access