Browse
Abstract
Quality and storability are crucial factors in production of apple juice. The main goal of this study was investigation of the effects of ascorbic acid and acerola juice on the changes of some sensorial parameters and bioactive compounds of aseptically filled and industrial scale produced apple juice during storage for 12 months. While the viscosity and pH of apple juice did not change significantly, the ΔE* peaked (20–30) at month 6 of the storage period. The colour of apple juice was lighter than at the beginning of storage. Maximum total phenolic contents were 1,100, 1,400, and 1,250 mg L−1 in the control, ascorbic acid supplemented, and acerola added samples, respectively. Other parameters (antioxidant capacity, ascorbic acid, browning index, etc.) peaked in month 4. Acerola was a good alternative anti-browning and antioxidant agent for the treatment of apple juice in the processing. The antioxidant capacity of apple juice treated with acerola was higher than with ascorbic acid. The results were obtained with industrial samples, thus, they can serve as a very good base for the optimisation process and industrial production without the need for scale-up.
Abstract
Fusarium spp. are phytopathogens causing fusarium head blight in wheat. They produce mycotoxins, mainly fumonisins, deoxynivalenol, and zearalenone. The study was conducted during two growing seasons (2020 and 2021) at the experimental field and laboratories of the Hungarian University of Agriculture and Life Sciences (MATE). The aim of the study was to determine the influence of growing season, nitrogen fertilisation, and wheat variety on Fusarium infection and mycotoxin production in wheat kernel. Zearalenone was not detected during the two growing seasons and deoxynivalenol was only detected in 2020. The results indicate that nitrogen fertilisation and wheat variety did not have statistically significant influence on Fusarium infection and mycotoxin production. The growing season had statistically significant influence on Fusarium infection and fumonisins production due to higher rainfall in 2021 compared to 2020 during the flowering period when the wheat spike is the most vulnerable to Fusarium infection.
Abstract
A three-year (2016–2018) open field experiment was conducted to study the effect of irrigation, fertilisation, and seasonal variation on the main bioactive components, such as carotenoids (lycopene and β-carotene), total polyphenols, antioxidant capacity, and tocopherols of processed Uno Rosso F1 tomato. The statistical evaluation of measurements proved that the multi-year data set cannot be evaluated as combined data set; the values obtained in different years must be evaluated separately. The impact of irrigation on the content of bioactive components varied from year to year. The correlation was negative between irrigation and α-tocopherol content in 2016 and 2018 (r = –0.567 and –0.605, respectively), polyphenol content in 2016 (r = –0.668), γ-tocopherol content in 2017 (r = –0.662), while positive correlation was observed between concentration of vitamin C (r = 0.533) in 2017, lycopene content (r = 0.473) in 2018 and irrigation intensity. A weak correlation was proved between K levels and concentrations of lycopene and polyphenols in 2016 (r = 0.301 and r = 0.392, respectively).
Abstract
Nitrogen (N) is one of the most essential nutrients affecting the yield and quality of maize (Zea mays L.). A field experiment was conducted at the experimental plot of the Department of Agronomy, The Hungarian University of Agriculture and Life Sciences, Hungary, to investigate the effect of nitrogen fertilisation on the yield and quality of maize. The experimental site included four observation plots with a net of 2 × 5 m size. Four N levels of T1, T2, T3, and T4 were sprayed at indicated plants in four replications according to treatment viz. 0, 50, 100, and 150 kg N ha−1. Nitrogen application in general does not significantly affect maize yield, its components, or grain quality. However, out of the four N treatments, the optimal N application between 50–100 kg N ha−1 potentially increased the yield, also the total expression of protein and starch contents in maize can be achieved with the right amount of N fertiliser, indicating that the treatment could produce a high grain yield as well as high protein and starch contents. Good N fertilising practice will boost the maize's nutritional value and make it more significant in the agriculture in the future. In addition, more research and assessment are essential to acquire the most benefit from the effect of optimal N application on maize yield and quality, and the findings could be beneficial to researchers and growers.
Due to extreme meteorological and soil hydrological situations the agricultural production security is highly unpredictable. To release the extent and duration of inland excess water (IEW) inundations or two-phase soil conditions during the period intended for cultivation, subsurface drainage (SD) has been used as a best practice in several countries. SD interventions took place between 1960’s and 1990 in Hungary. After 1989, land ownership conditions changed, thus professional operation and the necessary maintenance of the SD networks designed as a complex system became insignificant. In this paper, our aim was to present the IEW hazard in one of the most equipped areas by SD in Hungary. The occurrence frequency of IEW inundations in drained and non-drained (control) areas in different time intervals were compared. According to our results, we could state that the frequency of IEW on the subsurface drained areas was moderately lower in only a few periods compared to the control areas. IEW hazard of the arable areas at the Körös Interfluve was classified as nonhazarded in 52.7% of the area. Another 38.2% were moderately hazarded, 8.26% of the lands were meanly hazarded and less than 1% were highly hazarded area by IEW.
The Westsik’s long-term crop rotation experiment was set up in 1929 at the Nyíregyháza Experimental Station (NE Hungary) on a slightly acidic Arenosol. Besides fallow crop rotation (CR), effects of different organic amendments (lupine as green manure, lupine as main crop, straw manure, and farmyard manure (FYM) were studied with or without N or NPK-fertilizers. The crop rotation consisted of rye, potato, lupine, and oat with common vetch. The soil of potato plots was analysed in 2019 at the 90th anniversary of Westsik’s crop rotation experiment.
The following chemical and microbiological soil parameters were determined: soil pH, available nutrient contents, organic carbon (OC) and nitrogen (ON) contents, microbial biomass carbon (MBC) and nitrogen (MBN), soil respiration, net nitrification, and activity of some soil enzymes.
In the CRs, the soil pHH2O varied from acidic to weakly alkaline and it largely differed from pHKCl. The results showed a significant increase in the content of nitrate, available phosphorus and potassium in most of the fertilized plots. Applying straw, green manure, or FYM significantly increased the OC and ON contents. The total count of cultivable bacteria increased upon the application of the organic manures. Combined application of straw manure and N-fertilization heavily improved the abundance of the microscopic fungi.
While all the applied organic manures significantly enhanced the MBC, the MBN increased only by the green manure amendment. Our results revealed higher soil respiration rate in the plots receiving straw or FYM than in the control. Both green manure and FYM elevated the net nitrification rate. Phosphatase, saccharase, urease, and dehydrogenase enzymes showed a hesitating response to the manure application in the different CRs.
The soil respiration and dehydrogenase activity correlated to most of the measured chemical parameters. Among microbiological properties, the MBC and MBN, as well as dehydrogenase and other enzyme activities displayed a positive correlation. Results proved the need for the exogenous application of organic matter in the form of organic manures to enhance the nutritional status and health of the soil.
Greenhouse plastic contaminations in agricultural soils were studied to quantify and examine the macroplastic and microplastic contaminants on the soil surface, soil profile, and groundwater under greenhouse farmland. Random sampling was used to select three areas in a greenhouse farm where macroplastic and microplastic data were collected. Four composite samples were collected from shallow (0–20 cm) and deep (20–40 cm) soils for each sampling point, respectively. Three soil profiles were dug, and samples were collected at intervals of 20 cm. Groundwater samples were also collected from the same profiles at a depth of 100 cm. Microplastics were extracted using predigestion of organic matter with 30% H2O2 and density separation with ZnCl2. The total mass of macroplastics in the greenhouse farmland was 6.4 kg ha–1. Polyethylene and polyvinyl chloride were the dominant plastic structures, and the dominant sizes were 1–5 and 0.5–1.0 cm, respectively. Overall, the average abundance of microplastics in the greenhouse soil was 225 ± 61.69 pieces/kg, and the dominant size structure was 2–3 mm. The average microplastic concentrations at depths of 0–20 and 20–40 cm were 300 ± 93 and 150.0 ± 76.3 pieces/kg, respectively. The average microplastic concentration in the groundwater was 2.3 pieces/l, and fibers were the dominant plastic structure. Given that microplastics were found in greenhouse soil, soil profiles, and groundwater, we recommend the careful cleaning and disposal of plastics on greenhouse farmland and further research to shed light on the level of microplastic contamination in the soil profiles and groundwater.
Abstract
Soybean seeds were germinated on an industrial scale after soaking for 0–56 h to produce a special additive for food industrial use. The germination process of three soybean varieties was monitored with near-infrared (NIR) spectroscopy based on changes in the amount, status, or character of the water. This paper evaluates the “waterless” NIR spectra of sound, germinated, and heat treated seeds to try to follow the fine details of the germination process. The germination process was analysed with the help of cluster analysis (CA), principal component analysis (PCA), and polar qualification system (PQS) as statistical and chemometric methods. PCA proved to be the most sensitive spectrum evaluation method to follow the fine details of germination. The applied NIR method is suitable for non-destructively, real-time monitoring of the non-linear nature of germination.
Abstract
Pollen beetles (Coleoptera: Nitidulidae) rank among the most important pests of oilseed rape (Brassica napus). For their timely detection in early spring, yellow sticky or water pan traps are used; however, it has been suggested that the addition of chemical lures to attractive visual cues could improve trap efficacy. During the course of field trials in Hungary, we have developed a 3-component synthetic floral lure consisting of (E)-anethol + (E)-cinnamyl alcohol + (E)-cinnamyl acetate, which attracted large numbers of pollen beetles into large capture-capacity fluorescent yellow funnel traps. There was no apparent difference between the pollen beetle species Brassicogethes aeneus F. 1775 (earlier Meligethes aeneus), Brassicogethes viridescens F. 1775, Brassicogethes coracinus Sturm 1845 and Fabogethes nigrescens Sturm 1845 in their responses to the 3-component lure, which can therefore be used to trap all of them. Funnel traps with the new ternary floral lure were more efficient in catching beetles than those with lures containing 2-phenethyl isothiocyanate, a previously described plant-derived attractant for pollen beetles. However, the effect of the addition of the isothiocyanate to the ternary blend was not completely clear from these experiments and thus requires further studies.