Browse

You are looking at 1 - 10 of 673 items for :

  • Biology and Life Sciences x
  • Refine by Access: Content accessible to me x
Clear All

Abstract

Infectious diseases pose a formidable global challenge, compounded by the emergence of antimicrobial resistance. Consequently, researchers are actively exploring novel antimicrobial compounds as potential solutions. This endeavor underscores the pivotal role of methods employed for screening and evaluating antimicrobial activity—a critical step in discovery and characterization of antimicrobial agents. While traditional techniques such as well-diffusion, disk-diffusion, and broth-dilution are commonly utilized in antimicrobial assays, they may encounter limitations concerning reproducibility and speed. Additionally, a diverse array of antimicrobial assays including cross-streaking, poisoned-food, co-culture, time-kill kinetics, resazurin assay, bioautography, etc., are routinely employed in antimicrobial evaluations. Advanced techniques such as flow-cytometry, impedance analysis, and bioluminescent technique may offer rapid and sensitive results, providing deeper insights into the impact of antimicrobials on cellular integrity. However, their higher cost and limited accessibility in certain laboratory settings may present challenges. This article provides a comprehensive overview of assays designed to characterize antimicrobial activity, elucidating their underlying principles, protocols, advantages, and limitations. The primary objective is to enhance understanding of the methodologies designed for evaluating antimicrobial agents in our relentless battle against infectious diseases. By selecting the appropriate antimicrobial testing method, researchers can discern suitable conditions and streamline the identification of effective antimicrobial agents.

Open access

Abstract

The Giant Elm Bracket (Rigidoporus ulmarius) is a widely-distributed necrotrophic polypore species that causes white heart rot in deciduous trees. Despite its recognition as one of the largest species known for forming basidiomata, this perennial polypore had not been documented in Hungary. However, in recent years, two specimens macroscopically resembling this species were collected on old horse chestnut (Aesculus hippocastanum) trees from two different places in Hungary by amateur mycologists. In this study, subsequent morphological and molecular-genetic analyses of these fungal samples confirmed their identity as R. ulmarius. This study represents the first documented occurrence of this plant pathogenic polypore species in Hungary.

Open access
Acta Phytopathologica et Entomologica Hungarica
Authors:
Marianna I. Zhukovskaya
,
Inna V. Grushevaya
,
Alexander A. Miltsen
,
Oksana G. Selitskaya
,
Anna V. Shchenikova
,
Andrei N. Frolov
, and
Miklós Tóth

Abstract

The European corn borer, Ostrinia nubilalis (Hubner), relies on multimodal sensory information to find food, mates, mating and ovipositional grounds. Successful phytosanitary monitoring demands for the bait for the field traps to obtain the most reliable representation of pest abundance. Attraction to light and blend of key components of host plant odor, was tested both in the laboratory and field conditions. Ultraviolet light, which was the most effective in the wind tunnel experiments, was further tested in the field alone and in combination with bisexual lure. Bisexual lure, being attractive in the lab, as well as in the field, did not improve responses to ultraviolet in both experimental designs. All three baits attracted significantly more females than males in the field. Wind tunnel experiments revealed that ultraviolet elicited the shortest response latencies either alone or paired with the odor bait. The lack of synergistic effect between attractive light and odor stimuli is an important issue for pest monitoring. The possible reasons for the observed lack of synergy are the hierarchy of behavioral responses to different stimuli or the intensities of both stimuli are critically important for attractivity of combined stimulus and differ from separately presented ones.

Open access
European Journal of Microbiology and Immunology
Authors:
Cosme Alvarado-Esquivel
,
Sergio Estrada-Martínez
,
Agar Ramos-Nevarez
,
Ángel Osvaldo Alvarado-Félix
,
Sandra Margarita Cerrillo-Soto
,
Gustavo Alexis Alvarado-Félix
,
Carlos Alberto Guido-Arreola
, and
Leandro Saenz-Soto

Abstract

Abdominal pain has been rarely reported in individuals infected with Toxoplasma gondii (T. gondii). The aim of this study was to determine the association between T. gondii infection and abdominal pain. Two hundred and ninety-nine patients with abdominal pain (cases) and 299 age- and gender-matched people without abdominal pain (controls) were tested for anti-T. gondii IgG and IgM antibodies. Twenty-four (8.0%) of the 299 cases and 12 (4.0%) of the 299 controls were positive for anti-T. gondii IgG antibodies (OR: 2.08; 95% CI: 1.02–4.25; P = 0.03). The seroprevalence of T. gondii infection was significantly higher in women with frequent abdominal pain than in women without this clinical feature (OR: 2.30; 95% CI: 1.06–4.96; P = 0.02). Twelve (4.0%) of the 299 cases and 7 (2.3%) of the 299 controls had high (>150 IU mL−1) anti-T. gondii IgG antibody levels (OR: 1.74; 95% CI: 0.67–4.49; P = 0.24). Seven (29.2%) of the 24 cases with anti-T. gondii IgG antibodies and 3 (25.0%) of the 12 controls with anti-T. gondii IgG antibodies were positive to anti-T. gondii IgM antibodies (OR: 1.23; 95% CI: 0.25–5.97; P = 1.00). Results suggest an association between T. gondii infection and frequent abdominal pain. Further research to confirm this association should be conducted.

Open access

Abstract

Introduction

Over the past decade, enterococcal bloodstream infection (BSI) shows increasing incidence globally among the elderly and in patients with comorbidities. In this study, we aimed to assess microbiological and clinical characteristics and long-term outcomes of BSIs caused by Enterococcus spp. in adult patients with and without active onco-hematological malignancies hospitalized at a national referral institute.

Methods

A prospective analysis of consecutive enterococcal BSI cases was conducted in the National Institute of Hematology and Infectious Diseases (Budapest, Hungary) between December 2019 and April 2022. We compared characteristics and outcomes at 30-days and 1 year after diagnosis among patients with and without onco-hematological malignancies.

Results

In total, 141 patients were included (median age 68 ± 21 years, female sex 36.9%), 37% (52/141) had active onco-hematological malignancies. The distribution of species was as follows: 50.4% Enterococcus faecalis, 46.1% Enterococcus faecium, 1.4% Enterococcus avium and Enterococcus gallinarum, and 0.7% Enterococcus raffinosus. No statistically significant differences in all-cause mortality rates were observed between patient subgroups at 30 days (32.7 vs. 28.1%; P = 0.57) and 1 year (75.0 vs. 60.7%; P = 0.09).

Conclusion

Enterococcal bloodstream infections yielded a relevant burden of morbidity, but with no statistical difference in long-term outcomes of adult patients with and without active onco-hematological malignancies.

Open access

Abstract

In recent years, the incidence of food-borne bacterial enteric diseases has increased worldwide causing significant health care and socioeconomic burdens. According to the World Health Organization, there are an estimated 600 million cases of foodborne illnesses worldwide each year, resulting in 420,000 deaths. Despite intensive efforts to tackle this problem, foodborne pathogenic microorganisms continue to be spread further. Therefore, there is an urgent need to find novel anti-microbial non-toxic compounds for food preservation. One way to tackle this issue may be the usage of polyphenols, which have received increasing attention in the recent years given their pleotropic health-promoting properties. This prompted us to perform a literature search summarizing studies from the past 10 years regarding the potential anti-microbial and disease-alleviating effects of plant-derived phenolic compounds against foodborne bacterial pathogens. The included 16 studies provide evidence that polyphenols show pronounced anti-bacterial and anti-oxidant effects against both Gram-positive and Gram-negative bacterial species. In addition, synergistic anti-microbial effects in combination with synthetic antibiotics were observed. In conclusion, phenolic compounds may be useful as natural anti-microbial agents in the food, agricultural, and pharmaceutical industries in the combat of foodborne infections.

Open access

Abstract

Schistosomiasis is a neglected tropical disease that is prevalent in low- and middle-income countries. There are five human pathogenic species, of which Schistosoma haematobium, Schistosoma mansoni and Schistosoma japonicum are the most prevalent worldwide and cause the greatest burden of disease in terms of mortality and morbidity. In addition, hybrid schistosomes have been identified through molecular analysis. Human infection occurs when cercariae, the larval form of the parasite, penetrate the skin of people while bathing in contaminated waters such as lakes and rivers. Schistosomiasis can cause both urogenital and intestinal symptoms. Urogenital symptoms include haematuria, bladder fibrosis, kidney damage, and an increased risk of bladder cancer. Intestinal symptoms may include abdominal pain, sometimes accompanied by diarrhoea and blood in the stool. Schistosomiasis affects more than 250 million people and causes approximately 70 million Disability-Adjusted Life Years (DALYs), mainly in Africa, South America, and Asia. To control infection, it is essential to establish sensitive and specific diagnostic tests for epidemiological surveillance and morbidity reduction. This review provides an overview of schistosomiasis, with a focus on available diagnostic tools for Schistosoma spp. Current molecular detection methods and progress in the development of new diagnostics for schistosomiasis infection are also discussed.

Open access
European Journal of Microbiology and Immunology
Authors:
Ignasi Roca
,
Kathya Espinoza
,
Cinthia Irigoin-Lovera
,
Maria Piquet
,
Luciano A. Palomino-Kobayashi
,
Angie K. Castillo
,
Diego D. Gonzales-DelCarpio
,
Joaquim Viñes
,
Laura Muñoz
,
Barbara Ymaña
,
Rosario Oporto
,
Carlos Zavalaga
,
Maria J. Pons
, and
Joaquim Ruiz

Abstract

Acinetobacter spp. are often isolated from natural sources, but knowledge about their presence in wild animals is fragmented and uncomplete. The present study aimed to characterize a series of Acinetobacter radioresistens isolated from Humboldt penguins (Spheniscus humboldti). Fifteen Humboldt penguins from an inhabited northern Peruvian island were sampled. Microorganisms were identified by MALDI-TOF MS. Antibiotic susceptibility to 12 antimicrobial agents was established, and clonal relationships were determined. A representative isolate was selected for whole genome sequencing (WGS). A. radioresistens were isolated from the feces of 12 (80%) Humboldt penguins, being susceptible to all the antimicrobial agents tested, except eight cefotaxime-intermediate isolates. All A. radioresistens were clonally related. WGS showed that the isolate belonged to ST1972, the presence of two chromosomal encoded carbapenemases (bla OXA-23 and a putative subclass B3 metallo-β-lactamase), and a series of point mutations in antibiotic-resistance related chromosomal genes, which were considered as polymorphisms. In addition, a few virulence factors, including a capsule-encoding operon, superoxide dismutases, catalases, phospholipases and a siderophore receptor were identified. The present results suggest that A. radioresistens may be a common member of the gut microbiota of Humboldt penguins, but further studies in other geographical areas are needed to establish this finding.

Open access

Pilóta nélküli légi járművek alkalmazása a vizes élőhelyek modern felmérésében

Application of unmanned aerial vehicles as modern tools for wetland monitoring

Agrokémia és Talajtan
Authors:
Réka Döbröntey
,
János Grósz
,
Judit Rita Keleti
,
Tamás Szegi
,
Márta Fuchs
,
Erika Michéli
, and
Ádám Csorba

A vizes élőhelyek a vízi és a szárazföldi ökoszisztémák között elhelyezkedő, igen változatos, és általában nehezen lehatárolható területek. Kiemelt jelentőségük annak köszönhető, hogy bár csak a globális szárazföldi területek mintegy 6–7%-át borítják, kulcsfontosságú szerepet játszanak az éghajlat szabályozásában, a vizes ökoszisztémák biodiverzitásának és hidrológiai viszonyainak fenntartásában, valamint számos további ökológiai és társadalmi funkciót is szolgáltatnak, beleértve az árvízvédelmi, víztisztítási, szén-dioxid-tárolási, élőhelytámogatási és kulturális, rekreációs előnyöket. A vizes élőhelyek azonban mind természetes, mind antropogén hatások következtében térben és időben is dinamikusan változnak, ezért védelmük és megfigyelésük napjainkra igen fontos kutatási területté nőtte ki magát. A műholdas távérzékelés nagyobb területek egyidejű megfigyelését teszi lehetővé, azonban érzékeny a felhőzetre és a légköri hatásokra, bizonytalanságot okozva ezzel az eredményekben. A hagyományos monitoring technológiák mellett a pilóta nélküli légi járművek térnyerése egyre kifejezettebb, köszönhetően rugalmasságának, hatékonyságának és alacsony költségének, miközben nagy térbeli és időbeli felbontású, szisztematikus adatszolgáltatásra képes. Tanulmányunk a pilóta nélküli légi járművek alkalmazási lehetőségeibe nyújt betekintést a vizes élőhelyek felmérésében, valamint áttekinti és összehasonlítja az egyéb távérzékelés technológiák alkalmazhatóságát ezen területek megfigyelésében. Célja, hogy elősegítse a dróntechnológia további terjedését és széles körű alkalmazását a vizes élőhelyek monitorozásában.

Open access

Abstract

Introduction

APC and TP53 are the two most regularly mutated genes in colon adenocarcinoma (COAD), especially in progressive malignancies and antitumoral immune response. The current bioinformatics analysis investigates the APC and TP53 gene expression profile in colon adenocarcinoma as a prognostic characteristic for survival, particularly concentrating on the correlated immune microenvironment.

Methods

Clinical and genetic data of colon cancer and normal tissue samples were obtained from The Cancer Genome Atlas (TCGA)-COAD and Genotype-Tissue Expression (GTEx) online databases, respectively. The genetic differential expressions were analyzed in both groups via the one-way ANOVA test. Kaplan–Meier survival curves were applied to estimate the overall survival (OS). P < 0.05 was fixed as statistically significant. On Tumor Immune Estimation Resource and Gene Expression Profiling Interactive Analysis databases, the linkage between immune cell recruitment and APC and TP53 status was assessed through Spearman's correlation analysis.

Results

APC and TP53 were found mutated in 66.74% and 85.71% of the 454 and 7 TCGA-COAD patients in colon and rectosigmoid junction primary sites, respectively with a higher log2-transcriptome per million reads compared to the GTEx group (318 samples in sigmoid and 368 samples in transverse). Survival curves revealed a worse significant OS for the high-APC and TP53 profile colon. Spearman's analysis of immune cells demonstrated a strong positive correlation between the APC status and infiltration of T cell CD4+, T cell CD8+, NK cell, and macrophages and also a positive correlation between status and infiltration of T cell CD4+, T cell CD8+.

Conclusions

APC and TP53 gene mutations prevail in colon cancer and are extremely associated with poor prognosis and shortest survival. The infiltrating T cell CD4+, T cell CD8+, NK cell, and macrophages populate the colon microenvironment and regulate the mechanisms of tumor advancement, immune evasion, and sensitivity to standard chemotherapy. More comprehensive research is needed to demonstrate these results and turn them into new therapeutic outlooks.

Open access