Browse

You are looking at 1 - 10 of 696 items for :

  • Materials and Applied Sciences x
  • Refine by Access: Content accessible to me x
Clear All

Abstract

Wind generation is regarded by many as the future of renewable energy source, but the difficulty of recycling end-of-life wind turbine components could create another kind of environmental pollution. Either landfill or incineration of end-of-life wind turbine components will cause environmental hazards. However, the current recycling technology is immature and economical. Make clean energy ‘cleaner’! The recycling of end-of-life wind turbine rotor hub and blades has become a new goal and task for architects and designers. This article uses a real project reconstructed by end-of-life wind turbine components to demonstrate the positive role of spatial narrative in achieving low-carbon and sustainable design.

Open access

Abstract

The floodplains of the Tisza River, stretching across the eastern part of Hungary, are often affected by riverine and inland excess water flooding and draught. This paper investigates a possible solution to this problem utilizing the water retention capabilities of old floodplains. In this study, the effect of the position of the inlet structures of a floodplain, near Csongrád town, was examined with HEC-RAS 1D-2D coupled model. Based on the results, the rules of the deep floodplain selection were determined. On the extended model, the possibilities of a deep floodplain storage area chain have been explored. According to the estimate, more than 2.36 km3 potential storage capacity is available along the Hungarian section of the Tisza River.

Open access

Abstract

In order to develop and enhance the quality of life in Tunisian urban spaces, the integration of street furniture became a new challenge for urban designers to use new methods and techniques to combine functionality and aesthetics into their design. The main objective of this paper is to focus on the analysis of the street furniture user’s needs in urban spaces to understand and discuss the requirements that should be considered while designing.

Open access

Abstract

Nature-based solutions use a holistic viewpoint to address social challenges while providing environmental, social and economic benefits simultaneously. The Victoria Quay is a historical space with complex social and environmental issues. This study uses an investigation-oriented method to explore the re-planning strategies. The environmental problems are addressed by extending the green infrastructure into the site to recover the ecological corridor and alleviate flooding risks. The originally single land-use type is changed, and several historical buildings are transformed into landmarks to improve the connection with city center by linking the ‘golden route’. All the proposed measures tried to reactivate the various relationships rather than merely renew the Victoria Quay.

Open access

Abstract

Fungal disease resistant (PIWI) interspecific grape varieties are playing an important role as an alternative for organic wine production. Organic (bio) wines are demanded by numerous conscious consumers around the globe. They choose this kind of wines predominantly because of the absence of synthetic pesticides, fertilisers and sustainable agriculture. Resistant grape growing moreover results in additional environmental and health benefits. Nero and Bianca are among Hungary's most promising interspecific grape cultivars gaining international interest recently, there are, however, limited vitivinicultural knowledge on them. Our aim was to examine the flavonoid and anthocyanin composition for both interspecific varieties during different harvest times in two consecutive vintages. The date of harvest and vintage played a significant effect on grape and wine quality.

Open access

Abstract

Based on the theory of space syntax, this research conducts a quantitative study on the four stages of Zhanjiang urban spatial organization system, and draws the urban evolution process. This study found that the development strategy of different periods has a huge impact on the urban development. It determines the structural basis of the original urban space and creates strong development inertia. According to these research results, it can provide an effective theoretical reference for the future spatial expansion of the city.

Open access

Abstract

With the rapid development of China’s urbanization, a large number of people have moved from rural to urban areas. People have proposed higher and more urgent needs for the urban environment. Particularly, the urban street landscape is close to people’s lives, and the upgrading of design methods can improve the quality of life. Besides, the application of artificial intelligence design has become possible as information technology develops. In this paper, a visual simulator is established through algorithm models and applied to street landscape design.

Open access

Abstract

The aim is to derive an expression to calculate the natural frequencies and plot the mode shapes of a simply-supported beam with an overhang with an end overhang point mass by using the Euler-Bernoulli theory in the case of free transverse vibrations. The results are validated by finite element analysis. The importance of the system presented is that it can represent machine tool spindles or even machining tools like boring bars. The results are in good agreement with the results from the finite element analyses. The derived expression can be used in optimizing the value of the point mass and optimizing the support location for better performance of the system without the need to perform complex analysis to obtain the values of the natural frequencies and to plot the mode shapes.

Open access

Abstract

In this research work existing laboratory tests of slim floor beams with solid monolithic concrete slab were modeled and analyzed using GID and Atena software. After validating the advanced finite element model with the test results of the international literature, structural parameters were analyzed with the aim to study their influence on the load bearing and deformation capacity of the beams. The parameters were related to the geometric of the beam: size of web openings and top concrete cover. With these results conclusion can be noticed that focusing on the optimal arrangement of the geometrical parameters of the composite beam could lead to better structural behavior with more economical solutions.

Open access

Abstract

The optimization of high-rise office buildings' envelope and the application of energy-efficient measures have become a priority nowadays. Therefore, this investigation aims to assess the role of the façade's geometry design factors, e.g., folded façade perforation, window orientation, and window-to-wall ratio on building comfort and energy performance. The energy simulations were performed using IDA ICE 4.8 thermal simulation program to evaluate the thermal and visual comfort and the energy consumption of various façade test models. The optimization resulted in a façade model with a great level of thermal and visual comfort as well as a total energy reduction of 14%, representing a good compromise solution in the trade-off between thermal and visual comfort as well as energy efficiency.

Open access