Browse

You are looking at 111 - 120 of 11,062 items for :

  • Mathematics and Statistics x
  • All content x
Clear All

If a Banach-space operator has a complemented range, then its normed-space adjoint has a complemented kernel and the converse holds on a re exive Banach space. It is also shown when complemented kernel for an operator is equivalent to complemented range for its normed-space adjoint. This is applied to compact operators and to compact perturbations. In particular, compact perturbations of semi-Fredholm operators have complemented range and kernel for both the perturbed operator and its normed-space adjoint.

Restricted access

Some Erdős-Ko-Rado type extremal properties of families of vectors from {-1; 0; 1}n are considered.

Restricted access

We find upper and lower bounds for the probability of a union of events which generalize the well-known Chung-Erdős inequality. Moreover, we will show monotonicity of the bounds.

Restricted access

Given an integer k ≧ 2 and a real number γ ∈ [0; 1], which graphs of edge density γ contain the largest number of k-edge stars? For k = 2 Ahlswede and Katona proved that asymptotically there cannot be more such stars than in a clique or in the complement of a clique (depending on the value of γ). Here we extend their result to all integers k ≧ 2.

Restricted access

It is proved that the set of all idempotent operations defined on a given set forms a Menger algebra which can be characterized by its densely embedded v-ideal. We also describe automorphisms of this algebra.

Restricted access

A ring R has the (A)-property (resp., strong (A)-property) if every finitely generated ideal of R consisting entirely of zero divisors (resp., every finitely generated ideal of R generated by a finite number of zero-divisors elements of R) has a nonzero annihilator. The class of commutative rings with property (A) is quite large; for example, Noetherian rings, rings whose prime ideals are maximal, the polynomial ring R[x] and rings whose total ring of quotients are von Neumann regular. Let f : AB be a ring homomorphism and J be an ideal of B. In this paper, we investigate when the (A)-property and strong (A)-property are satisfied by the amalgamation of rings denoted by Af J, introduced by D'Anna, Finocchiaro and Fontana in [3]. Our aim is to construct new original classes of (A)-rings that are not strong (A)-rings, (A)-rings that are not Noetherian and (A)-rings whose total ring of quotients are not Von Neumann regular rings.

Restricted access

In this paper, a class S s(q) of close-to-convex functions is considered. Among the results studied for this class are its various characteristic properties such as the radius of convexity, certain bounds and coeffcient estimates. A suffcient condition for a function f to be in the class S s(q), is also obtained.

Restricted access

Multiplicative inverse transversals of regular semigroups were introduced by Blyth and McFadden in 1982. Since then, regular semigroups with an inverse transversal and their generalizations, such as regular semigroups with an orthodox transversal and abundant semigroups with an ample transversal, are investigated extensively in literature. On the other hand, restriction semigroups are generalizations of inverse semigroups in the class of non-regular semigroups. In this paper we initiate the investigations of E-semiabundant semigroups by using the ideal of "transversals". More precisely, we first introduce multiplicative restriction transversals for E-semiabundant semigroups and obtain some basic properties of E-semiabundant semigroups containing a multiplicative restriction transver- sal. Then we provide a construction method for E-semiabundant semigroups containing a multiplicative restriction transversal by using the Munn semigroup of an admissible quadruple and a restriction semigroup under some natural conditions. Our construction is similar to Hall's spined product construction of an orthodox semigroup. As a corollary, we obtain a new construction of a regular semigroup with a multiplicative inverse transversal and an abundant semigroup having a multiplicative ample transversal, which enriches the corresponding results obtained by Blyth-McFadden and El-Qallali, respectively.

Restricted access

In the Euclidean plane, the Erdős-Mordell inequality indicates that the sum of distances of an interior point of a triangle T to its vertices is larger than or equal to twice the sum of distances to the sides of T. We extend this theorem to arbitrary (normed or) Minkowski planes, and we generalize in an analogous way some other related inequalities, e.g. referring to polygons. We also derive Minkowskian analogues of Erdős-Mordell inequalities for tetrahedra and n-dimensional simplices. Finally, some related inequalities are obtained which additionally involve total edge-lengths of simplices.

Restricted access

We analyze the strong polarized partition relation with respect to several cardinal characteristics and forcing notions of the reals. We prove that random reals (as well as the existence of real-valued measurable cardinals) yield downward negative polarized relations.

Restricted access