Browse

You are looking at 171 - 180 of 11,074 items for :

  • Mathematics and Statistics x
  • Refine by Access: All Content x
Clear All

A new concept of Walsh-Lebesgue points is introduced for higher dimensions and it is proved that almost every point is a modified Walsh-Lebesgue point of an integrable function. It is shown that the Walsh-Fejér means σ n f of a function fL 1[0, 1)d converge to f at each modified Walsh-Lebesgue point, whenever n→∞ and n is in a cone. The same is proved for other summability means, such as for the Weierstrass, Abel, Picard, Bessel, Cesàro, de La Vallée-Poussin, Rogosinski and Riesz summations.

Restricted access

We propose a new two-parameter continuous model called the extended arcsine distribution restricted to the unit interval. It is a very competitive model to the beta and Kumaraswamy distributions for modeling percentages, rates, fractions and proportions. We provide a mathematical treatment of the new distribution including explicit expressions for the ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves, generating and quantile functions, Shannon entropy and order statistics. Maximum likelihood is used to estimate the model parameters and the expected information matrix is determined. We demonstrate by means of two applications to proportional data that it can give consistently a better fit than other important statistical models.

Restricted access

In this paper, we study dissipative q-Sturm—Liouville operators in Weyl’s limit circle case. We describe all maximal dissipative, maximal accretive, self adjoint extensions of q-Sturm—Liouville operators. Using Livšic’s theorems, we prove a theorem on completeness of the system of eigenvectors and associated vectors of the dissipative q-Sturm—Liouville operators.

Restricted access

In [14] we investigated some Vilenkin—Nörlund means with non-increasing coefficients. In particular, it was proved that under some special conditions the maximal operators of such summabily methods are bounded from the Hardy space H 1/(1+α) to the space weak-L 1/(1+α), (0 < α ≦ 1). In this paper we construct a martingale in the space H 1/(1+α), which satisfies the conditions considered in [14], and so that the maximal operators of these Vilenkin—Nörlund means with non-increasing coefficients are not bounded from the Hardy space H 1/(1+α) to the space L 1/(1+α). In particular, this shows that the conditions under which the result in [14] is proved are in a sense sharp. Moreover, as further applications, some well-known and new results are pointed out.

Restricted access

We present here characterizations of the most recently introduced continuous univariate distributions based on: (i) a simple relationship between two truncated moments; (ii) truncated moments of certain functions of the 1th order statistic; (iii) truncated moments of certain functions of the n th order statistic; (iv) truncated moment of certain function of the random variable. We like to mention that the characterization (i) which is expressed in terms of the ratio of truncated moments is stable in the sense of weak convergence. We will also point out that some of these distributions are infinitely divisible via Bondesson’s 1979 classifications.

Restricted access

A subgroup H of G is called M p-embedded in G, if there exists a p-nilpotent subgroup B of G such that H p ∈ Sylp(B) and B is M p-supplemented in G. In this paper, we use M p-embedded subgroups to study the structure of finite groups.

Restricted access

In this paper we establish approximation properties of Cesàro (C, −α) means with α ∈ (0, 1) of Vilenkin—Fourier series. This result allows one to obtain a condition which is sufficient for the convergence of the means σ n α(f, x) to f(x) in the L p-metric.

Restricted access

In this paper, we concern the Principal Ideal Theorem (PIT) for w-Noetherian rings. Let R be a w-Noetherian ring and a be a nonzero nonunit element of R. If p is a prime ideal of R minimal over (a), then ht p ≦ 1.

Restricted access

In this paper, we study the k-th order Kantorovich type modication of Szász—Mirakyan operators. We first establish explicit formulas giving the images of monomials and the moments up to order six. Using this modification, we present a quantitative Voronovskaya theorem for differentiated Szász—Mirakyan operators in weighted spaces. The approximation properties such as rate of convergence and simultaneous approximation by the new constructions are also obtained.

Restricted access
Studia Scientiarum Mathematicarum Hungarica
Authors: Muhammad Ahsan Binyamin, Junaid Alam Khan, Faira Kanwal Janjua, and Naveed Hussain

In this article we characterize the classification of stably simple curve singularities given by V. I. Arnold, in terms of invariants. On the basis of this characterization we describe an implementation of a classifier for stably simple curve singularities in the computer algebra system SINGULAR.

Restricted access