Browse

You are looking at 71 - 80 of 11,062 items for :

  • Mathematics and Statistics x
  • All content x
Clear All

Abstract

Let Vect (ℝℙ1) be the Lie algebra of smooth vector fields on ℝℙ1. In this paper, we classify aff(1)-invariant linear differential operators from Vect (ℝℙ1) to Dλ,μ;ν vanishing on aff(1), where Dλ,μ;ν:=Homdiff(λμ;ν) is the space of bilinear differential operators acting on weighted densities. This result allows us to compute the first differential aff(1)-relative cohomology of Vect (ℝℙ1) with coefficients in Dλ,μ;ν.

Restricted access

Abstract

To a branched cover f between orientable surfaces one can associate a certain branch datum D(f), that encodes the combinatorics of the cover. This D(f) satisfies a compatibility condition called the Riemann-Hurwitz relation. The old but still partly unsolved Hurwitz problem asks whether for a given abstract compatible branch datum D there exists a branched cover f such that D(f)=D. One can actually refine this problem and ask how many these f's exist, but one must of course decide what restrictions one puts on such f’s, and choose an equivalence relation up to which one regards them. As it turns out, quite a few natural choices for this relation are possible. In this short note we carefully analyze all these choices and show that the number of actually distinct ones is only three. To see that these three choices are indeed different from each other we employ Grothendieck's dessins d'enfant.

Restricted access

Abstract

The aim of this paper is to study the congruences on abundant semigroups with quasi-ideal adequate transversals. The good congruences on an abundant semigroup with a quasi-ideal adequate transversal S° are described by the equivalence triple abstractly which consists of equivalences on the structure component parts I, S° and Λ. Also, it is shown that the set of all good congruences on this kind of semigroup forms a complete lattice.

Restricted access

Abstract

We prove that in the category of firm acts over a firm semigroup monomorphisms co-incide with regular monomorphisms and we give an example of a non-injective monomorphism in this category. We also study conditions under which monomorphisms are injective and we prove that the lattice of subobjects of a firm act over a firm semigroup is isomorphic to the lattice unitary subacts of that act.

Restricted access

Abstract

Let {P n}n≥0 be the sequence of Padovan numbers defined by P 0 = 0, P 1 = 1, P 2 = 1, and Pn +3 = Pn +1 + Pn for all n ≥ 0. In this paper, we find all integers c admitting at least two representations as a difference between a Padovan number and a power of 3.

Restricted access

Abstract

By making use of the pre-Schwarzian norm given by
f=supzU(1|z|2)|f(z)f(z)|,
we obtain such norm estimates for Hohlov operator of functions belonging to the class of uniformly convex functions of order α and type β. We also employ an entirely new method to generalize and extend the results of Theorems 1, 2 and 3 in . Finally, some inequalities concerning the norm of the pre-Schwarzian derivative for Dziok-Srivastava operator are also considered.
Restricted access

Abstract

For β an ordinal, let PEAβ (SetPEAβ) denote the class of polyadic equality (set) algebras of dimension β. We show that for any infinite ordinal α, if APEAα is atomic, then for any n < ω, the n-neat reduct of A, in symbols rnAB, is a completely representable PEAn (regardless of the representability of A). That is to say, for all non-zero arnA, there is a BaSetPEAn and a homomorphism fa:rnAB such that fa(a) ≠ 0 and fa(X)=xXfa(x) for any X=A for which X exists. We give new proofs that various classes consisting solely of completely representable algebras of relations are not elementary; we further show that the class of completely representable relation algebras is not closed under ≡∞,ω. Various notions of representability (such as ‘satisfying the Lyndon conditions’, weak and strong) are lifted from the level of atom structures to that of atomic algebras and are further characterized via special neat embeddings. As a sample, we show that the class of atomic CAns satisfying the Lyndon conditions coincides with the class of atomic algebras in ElS c Nr n CA ω, where El denotes ‘elementary closure’ and S c is the operation of forming complete subalgebras.

Restricted access

Abstract

Let {Xn: n ≧ 1} be a sequence of dependent random variables and let {wnk: 1 ≦ kn, n ≧ 1} be a triangular array of real numbers. We prove the almost sure version of the CLT proved by Peligrad and Utev [7] for weighted partial sums of mixing and associated sequences of random variables, i.e.
limn1lognk=1n1kI(i=1kwkiXix)=12πxe12t2dta.s..
Restricted access

Abstract

It is shown that if N(R) is a Lie ideal of R (respectively Jordan ideal and R is 2-torsion-free), then N(R) is an ideal. Also, it is presented a characterization of Noetherian NR rings with central idempotents (respectively with the commutative set of nilpotent elements, the Abelian unit group, the commutative commutator set).

Restricted access

Abstract

In this paper we establish the boundedness of commutators of sublinear operators in weighted grand Morrey spaces. The sublinear operators under consideration contain integral operators such as Hardy-Littlewood and fractional maximal operators, Calderón-Zygmund operators, potential operators etc. The operators and spaces are defined on quasi-metric measure spaces with doubling measure.

Restricted access