Discover the Latest Journals in Architecture and Architectonics

Architecture is both the process and product of planning, designing, and constructing a building or structure, while architectonics is the scientific study of architecture itself. Architectural works are often considered important cultural symbols and works of art, and we often identify past civilizations with their architectural heritage.

Architecture and Architectonics

You are looking at 101 - 110 of 1,900 items for

  • Refine by Access: All Content x
Clear All

Abstract

The current research aimed to obtain mean pressure distribution over an air-inflated membrane structure using Computational Wind Engineering tools. The steady-state analysis applied the Reynolds-Averaged Navier-Stokes equations with the k ε standard turbulence model. The pressure coefficients were compared with former experimental results to validate the numerical solution. Significant errors were detected close to the critical flow separation points when comparing the numerical results with the wind tunnel tests. However, these errors are local, and the numerical methodology provides accurate results in those areas with minor turbulence motion influence. In general, the numerical solution provided good approximation of the pressure coefficient fields.

Open access

Abstract

Due to the increase in earthquake activity in Iraq and Middle East during the last two decades, the study and understanding of probable destructive action and the best method to mitigate this effect became more important. So, many improvements and mitigation methods can be used. In this study, the use of permeation grout technique was adopted to prevent the existing soil condition in urban area by using cement kiln dust and bentonite clay. The tests were executed by using 1 g shaking table apparatus to simulate a sinusoidal motion (vibration) at specified different frequencies. The liquefaction phenomena were observed for loose saturated sand at 60 s, 25 s, and 10 s for 0.5 Hz, 0.75 Hz, and 1 Hz, respectively. After mitigation process, the soil liquefaction did not occur until 100 s, 60 s, and 30 s, for the same mentioned frequencies. Besides, the use of cement kiln dust decreases the liquefaction potential and increase the factor of safety.

Restricted access
Pollack Periodica
Authors:
Rasha Ali Kamil
,
Huda M. Atiea
,
Ali Abbas Kadhem
,
Layth Abdulrasool Alasadi
, and
Qusay A. Jabal

Abstract

In this article, polymer-modified concrete was studied to present the effect of using additives on its mechanical properties. This will be achieved by employing a high-performance super plasticizing admixture that significantly enhances polymer-modified concrete mechanical capabilities. The study indicates that the polymer styrene-butadiene rubber (used increases concrete mechanical properties by 10% by weight. When the dosage exceeds 10% by weight of cement, the compressive, tensile, and flexural strengths of polymer-modified concrete are diminished. With the addition of a superplasticizer with a ratio of 1.2%, regular polymer-modified concrete compressive strength has increased from 34.3 to 42.9 MPa for a 10% polymer/cement ratio. Additionally, this superplasticizer enhanced the Material's flexural and tensile strength.

Restricted access

Abstract

Multimodal biometric systems have been widely implemented in a variety of real-world scenarios due to their ability to overcome limitations associated with unimodal biometric systems. This paper is focused on the combination of the face, ear and gait in a unified multimodal biometric identification system using handcrafted features. These approaches provide robust and discriminative features to solve the biometric problem. In this research, speed up robust features and histogram of oriented gradients approaches have been used to extract features from face, ear and gait. The extracted features are optimized using genetic algorithm and classified using Levenberg-Marquardt backpropagation neural network. The system performance is evaluated on constrained and unconstrained dataset conditions.

Restricted access

Abstract

This research paper exhibits the design of a V-shaped cantilever beam as a micro Energy Harvester (EH) having Piezoelectric (PZT) as its energy source for biomedical applications. PZT source based materials have the ability to convert the mechanical energy into electrical energy. Low-power biomedical devices mostly operate using electrical energy (i.e. batteries). But batteries are treated as a bio-hazard due to the massive use of biomedical applications. To overcome this toxic bio-hazard, the proposed PZT based V-shaped cantilever beam of micro EH can solve the limitations. To perform the experimental work, the cantilever beam design parameters - length, width and thickness have been considered and simulated using COMSOL Multiphysics to get the resonant frequency of 156.19 Hz which is lower than previous research work. It was observed that the obtained lower resonant frequency can be converted into AC voltage (mV) using PZT material. To convert the output AC voltage (mV) into DC voltage, a circuit of an Ultra-Low-Power (ULP) EH will be designed in LTSPICE software. Finally, the integration of the both V-shape cantilever beam and the ULP EH circuit will be implemented in PCB hardware to generate the output power (10 µW), will be stored in super-capacitor for biomedical devices-pacemaker.

Open access

Abstract

Side friction refers to combined variables indicating the degree of interaction between the activities and the traffic stream. The condition worsens when the transport demand and road-side activities increase, leading to inefficient traffic performance. This study has been focused on evaluating side friction impacts in terms of capacity and speed. Four links divided and undivided streets in Al-Najaf City, Iraq, were selected and on-street parking, pedestrian activities, entry-exit maneuvers, and temporary parking vehicles are considered as side friction elements. The results show about a 47% reduction in speed and about a 49% reduction in the capacity at a very high side friction level. Finally, a speed-predicting model has been developed for predicting the speed under side friction impacts.

Restricted access
Pollack Periodica
Authors:
Musaab A. A. Mohammed
,
Balázs Kovács
,
Norbert P. Szabó
, and
Péter Szűcs

Abstract

The multi-aquifer system of the Nubian aquifer in central Sudan hydrogeological system was simulated using a three-dimensional steady-state model. The goal of the study is to detect the effect of pumping on the groundwater flow and thus, the aquifer productivity. The conceptual model of the study area was built based on the available geological and hydrogeological data guided by geophysical survey. Processing MODFLOW numerical code was used to calculate the hydraulic head and water balance under the existing boundary conditions. The model accurately simulated the hydraulic head with a determination coefficient of 0.88. The calibrated model indicated that the change in storage is 0.56 m3/day indicating the study area constitutes highly productive zone and is recommended for groundwater developments.

Open access

Abstract

Real-time deformation measurements have the potential to be used in a wide range of civil and structural engineering applications. This paper introduces an algorithm that utilizes time-based photogrammetry to measure deformations in real-time. The hardware used in the algorithm consists of a camera and a computer that runs camera-control software and a MATLAB code. The code is responsible for detecting the approximate locations of the circular targets using normalized 2D cross-correlation and performing the sub-pixel measurement of the center by fitting an ellipse on the edges of the circular target. During an experimental load test of a concrete slab outfitted with Ringed Automated Detection targets, a series of images were taken at different loads. The coordinates of the targets were measured using the edge-ellipse operator, least-squares matching, and digital image correlation methods. The edge-ellipse operator has proven to be an effective method of measuring the image coordinates of circular targets.

Restricted access
Pollack Periodica
Authors:
Muthusamy Saradha
,
Thaniarasu Ilango
,
Shanmugam Annamalai
, and
Krishnamurthy Muthumani

Abstract

An experimental study was carried out on geo-polymer and reinforced concrete beams to evaluate the flexural behavior of the beams for the structural grade of M30 concrete. The results show that the geo-polymer concrete beams exhibit similar flexural strength when compared to reinforced concrete beams. The split tensile strength, stiffness characters, the energy capacity and ductility relationship were also found with satisfactory results. The deflection and the stiffness degradation at the salient stages were found to be similar and thus the geo-polymer concrete beams find a good alternative to reinforced concrete beams under flexural behavior.

Restricted access

Abstract

Recent studies showed a significant peak of the salt contamination in the Tisza River that exceeded ten times over the average level. The document summarizes the works performed on the investigation of ground displacement using multi-temporal satellite radar interferometry technique in Solotvyno mine located in Tiachiv region. Multi-temporal InSAR aims to identify coherent radar targets exhibiting high phase stability over the entire observation period and derives point data with locations corresponding mainly to the point-wise, man-made features. The middle area with no persecuted targets may correspond to the substantial physical changes of the surface caused by activities like mining or tunneling, adding, or removing structures or their components, and motion perceptible in one pixel.

Restricted access