Discover the Latest Journals in Architecture and Architectonics

Architecture is both the process and product of planning, designing, and constructing a building or structure, while architectonics is the scientific study of architecture itself. Architectural works are often considered important cultural symbols and works of art, and we often identify past civilizations with their architectural heritage.

Architecture and Architectonics

You are looking at 101 - 150 of 2,050 items for

  • Refine by Access: All Content x
Clear All

Abstract

Reduction of design errors, minimisation of rework and the improvement of the design productivity are key factors in building engineering systems (including structural and architectural solutions, ventilation systems, sewerage systems, water supply and heating systems, power supply systems, and communication networks). These goals can be achieved with a complex approach that prioritises the design of different building engineering systems in the model during the design phase, in order to provide a consistent design for different building engineering systems. The paper presents a novel approach for the application of plugins in building service systems with the elimination of collision in the focus. Collision reduction actions in this methodology are categorised into three levels: the code level, which pertains to plugin developers; the algorithm level, which relates to BIM coordinators; and the user level, which concerns engineers performing the check. This new systematic approach to collision resolution prioritises maintaining the consistency of collision detection across different systems and storing all information about each collision. Collision checking is based on several key factors, such as complying with the sequence of checking systems, excluding irrelevant collisions, and setting tolerances when joining system elements. The aim of our approach is to automate and expedite not only the identification of the intersections but also the subsequent work with it throughout the entire project life cycle. The results are demonstrated by a case study conducted in the frame of a real project.

Open access
International Review of Applied Sciences and Engineering
Authors:
Ali Falih Challoob
,
Nur Azzammudin Bin Rahmat
,
Vigna K. A/L Ramachandaramurthy
, and
Amjad J. Humaidi

Abstract

The Energy Management System (EMS) is critical for electric vehicle (EV) in order to optimize energy consumption, improve efficiency, and enhance vehicle performance. The EMS provides the optimization of energy distribution among various vehicle components, reduces energy losses and maximizes the vehicle's efficacy. The EMS reduces battery stress to prevent excessive charging and discharging cycles; thereby, decreases the necessity for premature battery replacement which, in turn, contributes to the battery's life time. The goal of this research is to develop robust control technique to maximize the use of energy storage systems, renewable energy sources and the bidirectional power flow associated with EVs. The proposed robust control approach is based on combination of flatness theory with artificial neural network. The controller is responsible for maintaining the voltage DC bus stabilized and enhancing the quality of the power fed to the EV side. The performance of controlled EMS is verified via computer simulation within MATLAB/SIMULINK environment. As compared to classical proportional-integral (PI) control, the computer results show the proposed controller (FEMS-ANN) gives higher power quality of EV, lower overshot level in the DC voltage, faster response to abnormal conditions, and less steady state error.

Open access

Abstract

The rise of e-commerce necessitates sustainable practices for a greener future. While the e-commerce boom offers immense economic opportunities, minimizing its environmental impact and upholding ethical business conduct are essential. Current research on e-commerce heavily focuses on information technology (IT) for understanding and improving consumer acceptance. However, a critical gap exists in exploring IT's potential contributions to sustainability, crime prevention, and environmental safety. This study bridges this gap by exploring the role of IT integration in managerial practices to enhance environmental protection, crime prevention, and foster sustainability within Bangladesh's booming e-commerce sector. Focusing on e-commerce managers' perspectives, the research examines effective leadership strategies for IT implementation. Additionally, it utilizes the Technology Acceptance Model (TAM) to analyze the relationships between user perception and its impact on e-commerce performance. Using a structured questionnaire, we collected the data from 418 e-commerce managers. The research design incorporates a robust framework, hypothesis formulation, and methodological rigor grounded in TAM principles. The findings reveal a significant positive contribution of IT to environmental protection, crime prevention, and overall sustainability within the e-commerce sector. Managers' perceptions highlight that effective IT utilization ensures environmental safety, safeguards data against criminal activity, and promotes organizational sustainability. Furthermore, this research provides a roadmap for e-commerce businesses to accelerate their sustainability efforts. It also equips academics with valuable insights to advance knowledge on building a secure and sustainable future in the digital age.

Open access
Pollack Periodica
Authors:
Haik Tomajian
,
David Ojo
,
János Gyergyák
,
Ágnes Borsos
, and
Gabriella Medvegy

Abstract

As cities continue to grow and diversify, urban planners, and architects face the challenge of creating housing solutions that can flexibly respond to many demands and changes over time. This rapid change in the urban landscape necessitates adaptable housing design typologies to meet the evolving needs of urban residents. Several residential building, typologies have emerged with the intent of solving the problems arising from overpopulation. This paper aims to shed light on the importance of adaptability in urban housing design and its potential to enhance urban living environments. It reviews adaptability through various urban housing typologies, exploring the concept, its significance, and strategies that can be employed to achieve adaptable dense housing solutions.

Open access
Pollack Periodica
Authors:
Flóra Hajdu
,
Csaba Hajdu
,
László Környei
,
Dóra Beke
, and
Rajmund Kuti

Abstract

Wildfire simulations can help to better understand the dynamics and effects of forest fires. The basis of wildfire simulation is the tree-burning simulation. In this paper, the fire simulation of 7 different geometry Hungarian trees in the case of arson is presented. It was observed that the trees were burned down fast. The maximum mass loss rate and maximum heat release rate were larger as the tree was larger. The largest intensity fire could be observed in the case of the smallest tree. The maximum temperature was higher in the case of a large crown diameter. The maximum aerosol reached high pollutant concentrations. In the case of large crown height, the maximum CO2 concentration was higher. The results presented in this paper can be the basis of the following forest fire simulations.

Open access

Abstract

An intelligent tutoring system is a computer-based educational tool designed to provide adaptive learning environment to learners, mimicking the role of a human tutor. Its most typical areas of application are language learning, mathematics education, programming courses and medical training. Intelligent Tutoring Systems are based on the knowledge-module that is holding the system's knowledge in a well-structured format. Considering the current state of the art knowledge-module representations, a model that can represent evolving information is lacking. Representing evolving information is needed for those tutoring systems that are working with dynamically changing domains, e.g., software science. In this paper a new combined model is presented that is based on the ontology model and the fundamentals of knowledge space theory. The proposed model introduces the term of abstract time to be able to formulate an evolving knowledge graph. This paper introduces the term of evoking-hooks that makes it possible to realize connections between external domain elements and the nodes of the proposed model.

Open access
Pollack Periodica
Authors:
Andrea Raczková
,
Ivona Škultétyová
,
Réka Wittmanová
,
Jaroslav Hrudka
, and
L'uboš Hurban

Abstract

In a result of the increase in impervious surfaces in the urbanized area, there is an increase in surface runoff and at the same time an overload of the sewage network. In order to reduce the mentioned negative impacts in the inner city of Bratislava, this study was developed. The aim of this study was to design as possible the most efficient possible infiltration device for capturing rainwater and keeping it at the point of impact of precipitation of the addressed site. The Novohradska Grammar School campus was chosen as the area of interest. It is assumed that, together with elements of green infrastructure, these measures will be able to contribute in order to mitigate the adverse effects of urbanization in the capital.

Restricted access

Abstract

The inorganic scaling in wells is a common problem faced by mining companies. At present, the use of protective coatings for tubing as a measure to prevent or reduce the formation of inorganic scale deposits on pipe walls has not been fully studied. To use protective coatings as a measure to counteract the deposition of inorganic salts, it is necessary to develop a method that allows assessing the ability of coatings, as well as polymer and metal materials, to prevent the formation of inorganic scale deposits on the inner surface of pipes.

The article proposes a method for assessing the ability of protective coatings to resist the inorganic scaling on the inner surface of tubing. The proposed assessment method allows to make an informed decision on the advisability of using internal protective coatings of tubing to prevent (or reduce) the formation of inorganic scale deposits. The authors consider design features of a test bench for assessing the resistance of coatings to inorganic scale deposits, which allows to simulate the conditions for the formation of scale deposits that are as close as possible to the real conditions of oil production facilities. The article presents the results of bench tests of nine coating samples, two polymer samples and one sample made of St 40G2 steel. To assess the effectiveness of using tubing with an internal anti-corrosion coating as a measure to combat scale deposits, additional research is required to assess the possibility of complex use of coatings in conjunction with other methods of preventing processes of inorganic scaling. Thus, the authors developed the Bench for assessing the resistance of protective coatings of tubing to inorganic scale deposits. A dynamic testing technique is proposed to evaluate the resistance of protective coatings to inorganic scale deposits. Based on the presented results, conclusions were drawn about the possibility of using protective coatings on tubing as a measure to prevent the formation of inorganic scale deposits on the inner surface of the tubing.

Open access

Abstract

The work focuses in architectural dimension of urban form, by confronting the plans of three neighborhoods in Prishtina that represent potentially three main urban paradigms of the last decades in city's urban transformation. The study aims to unfold the main elements, confront them, and expose to possible transformation. The work progressively decomposes each case into basic components and deductively to their minimal unit.

The research, through interpretation and graphic illustrations, analyzes the three plans by layers: basic elements and their relational modalities, urban matrix, open space character and composing minimal units. The process will identify the main components, and their generic potentiality to be considered as future inputs in city's development.

Open access
Pollack Periodica
Authors:
Naghm Mahdi Saidik Al-jamaily
,
Huda M. Atiea
,
Qusay A. Jabal
,
Waseem H. Mahdi
, and
Laith Abdulrasool Alasadi

Abstract

Even though concrete structures are safer than steel structures in terms of fire resistance, the risk exists in concrete structures by spalling or exploding, especially in high-strength concrete. This study aims to produce a particular type of concrete using waste ceramics as fine aggregate and waste glass as coarse aggregate and compare data with normal aggregate concrete. Studies show that using waste ceramic and glass increases the fire resistance of concrete. After fire exposure in the control mix, the residual compressive strength was 10 MPa. The waste aggregate concrete was found to be 26.9 MPa after 800 centigrade exposures, which was an excellent result. Waste materials decreased construction costs and led to a clean environment.

Restricted access

Abstract

Manufacturing ceramic green structures using starch consolidation casting is an established process that is simple, non-hazard, and low-cost. In this study, starch consolidation casting is used to prepare ceramics based on submicron monoclinic zirconia with additions of alumina and magnesia. Scanning electron microscopy results indicate that the size of pores decreased and the morphological irregularity increased when the tapioca starch content increased. The sample with 30 wt.% tapioca starch in a 55 wt.% slurry concentration had the highest estimated apparent porosity (around 56%), whereas the sample with 10 wt.% in a 68 wt.% suspension concentration had the lowest (about 35%).

Open access

Abstract

In the ever-changing realm of the contemporary workplace, adaptability and flexibility have emerged as crucial attributes for office buildings. The method of axes system design, in conjunction with modular structures, fosters a workspace that can seamlessly adapt to the evolving needs of offices. This system embodies a comprehensive approach to office design, emphasizing the integration of four important principles: modularity, adaptability, interconnectedness, and flexibility. The modular nature of the structural axes design allows for swift and cost-effective adjustments, facilitating customer needs. The dynamism of this system ensures that office spaces are in a perpetual state of evolution, reflecting the changing dynamics of the contemporary workplace as to be shown in this paper.

Open access

Abstract

Plastic pollution of oceans and seas is increasing every year and coastal countries need to pay particular attention to this problem. Four Asian countries – Japan, China, Singapore, South Korea – were analysed in terms of the amount of waste and plastic waste generated and their recycling rates. For each country, available data were collected and converted into a common unit of measurement – metric tonnes per 1,000 people. The countries' performance to date was analysed and used as a basis for projections for 2030. Based on the trends so far, Japan has seen an 11% reduction in plastics waste and a 6% reduction in waste over the period, while China has seen a 27% increase in waste and an 8% reduction in plastic waste. In South Korea, plastic waste increased by 49% and waste by 21%. In Singapore, waste decreased by 13% and plastic waste increased by 15%. On current trends, none of the countries are projected to reach their 2030 targets. However, by complying with current and newly introduced regulations, they have a chance to move closer to their targets.

Open access

Abstract

Thermomechanical treatments and variations in chemical composition during the production of these alloys allow their properties to be adjusted as necessary. In the present research, the influence of chemical modification was analyzed by adding a combination of two rare earth elements (lanthanum and cerium) and performing a pretreatment before natural and artificial aging. With this, it was observed that said chemical modification led to an increase in hardness after artificial aging and specific suppression of the hardening speed at room temperature, combined with a pretreatment process to improve the density of the nucleation site and take advantage of the possible vacancy capture effect. Furthermore, microstructural changes were observed in the study alloys by scanning electron microscopy. The above allows the design of alloy production processes according to the requirements of each application.

Open access

Abstract

Facial recognition technology is transformative in security and human-machine interaction, reshaping societal interactions. Robust descriptors, essential for high precision in machine learning tasks like recognition and recall, are integral to this transformation. This paper presents a hybrid model enhancing local binary pattern descriptors for facial representation. By integrating rotation-invariant local binary pattern with uniform rotation-invariant grey-level co-occurrence, employing linear discriminant analysis for feature space optimization, and utilizing an artificial neural network for classification, the model achieves exceptional accuracy rates of 100% for Olivetti Research Laboratory, 99.98% for Maastricht University Computer Vision Test, and 99.17% for Extended Yale B, surpassing traditional methods significantly.

Restricted access
Pollack Periodica
Authors:
Josef Hadipramana
,
Fetra Venny Riza
,
Ade Faisal
,
Bambang Hadibroto
, and
Shahrul Niza Mokhatar

Abstract

The study aims to investigate and find natural fiber as concrete reinforcement using the self-compacting concrete method. Methods of adding fiber and self-compacting concrete methods are exciting because these two methods have different characteristics and advantages. Therefore, the performance of the fresh-state flow capability of the self-compacting concrete method, which contains various fibers, was observed. Coconut fiber, pineapple leaf fiber, ijuk sugar palm fiber, and artificial polypropylene fiber were used with varying compositions of 0.3, 0.5, and 0.7% by mass of binder. The results show that coconut and pineapple fiber concrete met the European Guidelines for Self-Compacting Concrete standards. The coconut and pineapple fiber concrete performed admirably in all tests.

Restricted access

Abstract

With the rise of the digital era, digital reading and learning have become widespread. University libraries, as core locations for study and communication, face challenges in fully meeting the demands of modern teaching and learning. This paper takes the library at the Changqing campus of Shandong University of Arts as a case study to explore the environmental space design of constructed libraries in the digital era. By reviewing relevant concepts and theoretical frameworks, analyzing the existing environment, and researching intervention design methods, the paper discusses the positive role of adapting to the digital future in renovating established library spaces.

Restricted access
Pollack Periodica
Authors:
Zsolt Ercsey
,
László Forray
, and
Tamás Storcz

Abstract

Streaming services spread rapidly. Among these services there are the linear TV, video library or program review system, while the online platform offering these contents is called mobile TV. A recommendation system may not only keep existing clients, but may also generate further turnover, should it introduce new content to the users. In this paper a recommendation system based on the Élő point calculation method is addressed. It is detailed how the programs should be grouped into different dimensions and what type of categories should be considered. Further, the idea of punch cards is introduced. Besides, the user profiles are set. The match system introduced by Élő is applied to the present situation. The system is introduced at a local mobile TV provider with 20,000 users.

Open access
Pollack Periodica
Authors:
Ali J. Mohammed
,
Hussein Hayder Mohammed Ali
,
Anwar S. Barrak
,
A. M. Hussein
, and
Murad Ramadan Mohammed

Abstract

A computational model is developed to investigate the convective heat transfer properties and the fluid flow characteristics of cupric oxide - water nano-fluid in a horizontal circular pipe aiming to provide insights into optimizing heat transfer in such systems. A twisted tape with varied twist ratios is inserted. This quantitative investigation used five Reynolds number from 4,000 to 12,000 under a uniform heat flux scenario of 25,000 W m−2. All experiments were performed as a single-phase fluid with cupric oxide values of 0, 0.4, 1, and 2% by volume. By reducing the twist ratio and increasing volume concentration, the average heat transfer coefficient of cupric oxide-water nano-fluid was improved. For a twist ratio of 4D, the maximum heat transfer improvement was 228% greater than the plain pipe. The presence of twisted tape with modest step ratios causes the friction factor to grow.

Restricted access

Abstract

This research aims to study the pullout resistance of a helical pile using three methods of machine learning techniques, which are: random forest regression, support vector regression, and adaptive neuro-fuzzy inference system, based on experimental results of a helical pile. The performance of these three techniques has been d compared and the results show that random forest algorithm has best performance than neuro-fuzzy inference system and support vector technique. The results show that machine learning considered a good tool in terms of estimating the pullout resistance of helical piles in the soil.

Open access

Abstract

Fused deposition modeling (FDM) 3D printing is widely utilized for producing thermoplastic components with functional purposes. However, the inherent mechanical limitations of pure thermoplastic materials necessitate enhancements in their mechanical characteristics when employed in certain applications. One strategy for addressing this challenge involves the incorporation of reinforcement materials, such as carbon fiber (CF), within the thermoplastic matrix. This approach leads to the creation of carbon fiber-reinforced polymer composites (CFRPs) suitable for engineering applications. The utilization of CFRPs in 3D printing amalgamates the benefits of additive manufacturing, including customization, cost-effectiveness, reduced waste, swift prototyping, and accelerated production, with the remarkable specific strength of carbon fiber. This study encompasses tensile and compressive testing of distinct material compositions: recycled polylactic acid (rPLA), PLA enriched with 10 wt.% carbon fiber, pristine polyethylene terephthalate glycol (PETG), and PETG bolstered with 10 wt.% carbon fiber. Tensile tests adhere to the ASTM D3039 standard for specimens of rectangular shape, while the ASTM D695 standard governs the compressive testing procedures. Additionally, an inquiry into the influence of the primary 3D printing build orientation parameter on the tensile and compressive strengths of diverse materials was conducted. The outcomes reveal that rPLA exhibits superior mechanical properties in both tensile and compressive tests, irrespective of flat or on-edge build orientations. In the context of tensile strength analysis, it is noteworthy that rPLA demonstrated a superior performance, surpassing CFPLA by 30% in flat orientation and exhibiting a remarkable 39.2% advantage in on-edge orientation. Moreover, PLA reinforced with carbon fiber exhibits superior tensile and compressive properties compared to its PETG counterpart. A comparative analysis between CFPLA and CF-PETG indicates that CF-PLA demonstrates higher tensile strengths, with increases of 26.6 and 27.6% for flat and on-edge orientations, respectively. In the context of compressive strength analysis, rPLA surpassed CFPLA, PETG, and CF-PETG by 23.7, 53, and 67%, respectively. Intriguingly, the findings indicate that the incorporation of 10 wt.% carbon fiber diminishes the tensile and compressive properties in comparison to pure PETG.

Open access

Abstract

The manufacture of High-Performance Concrete (HPC) in bridge deck construction is part of an experimental framework that is also developing in the numerical domain to fill the existing gaps in understanding its behavior. However, the numerical modeling of HPC for bridge decks remains largely under-explored. It is precisely this gap that has sparked our interest in this research area, thus giving our work its innovative character.

This study primarily aims to deepen the understanding of the behavior of HPC bridge decks while manufacturing an efficient and economical HPC using local materials possessing very high properties (mechanical, physical, elastic, durability, and implementation) and advanced numerical modeling. This modeling has enabled us to study the behavior of HPC bridge decks in relation to cracking through the Extended Finite Element Method (X-FEM), an innovative solution that enables the modeling of discontinuities without complicating the process. This has been confirmed by the quality of the results, which show an excellent correlation with experimental data, underscoring the accuracy of the modeling. These results also reveal that the use of HPC in bridge construction can significantly reduce degradation risks while enhancing their performance. Consequently, the adoption of HPC stands out as a beneficial strategy, not only to minimize bridge degradation but also to extend their durability.

Open access

Abstract

Spatial data management is crucial for applications like urban planning and environmental monitoring. While traditional relational databases are commonly used, they struggle with large and complex spatial data. NoSQL databases provide support for unstructured data and scalability. This article compares the performance and disk space usage of SQL Server (a relational database) and MongoDB (NoSQL database) using an open-source library. Experiments conducted with the OpenStreetMap dataset from Central America show that the MongoDB database outperformed the relational SQL Server database in most cases, offering practical advantages for spatial data management in Geographic Information System applications.

Open access

The Geometric Construction of Hexagonal Apses in Mediaeval Hungary

Hatszögű apszisok geometriai szerkesztése a középkori Magyarország területén

Építés - Építészettudomány
Authors:
Fanni Budaházi
and
Balázs Halmos

Geometric construction in Gothic architecture has been a popular subject of research for centuries. The use and extent of quadrature and triangulation grids has long been debated, as the few architectural drawings that survived from the era do not indicate the construction process. Modern surveying methods, however, allow us to inspect the exact geometry of a building with all its irregularities – in the case of this article we use 3D point clouds created by laser scanning, from which accurate measurements can be taken.

In our study we analyse four churches from mediaeval Hungary: the Franciscan church of Szeged-Alsóváros, the fortified church of Cincu (RO, Nagysink/Großschenk), the Franciscan church of GyöngyösAlsóváros and the fortified church of Mediaș (RO, Medgyes/Mediasch). Each of these are built with elongated choirs and approximately hexagonal apses. We explore the possible construction systems of these buildings and compare them to each other. We aim to present the similarities and differences between them and to offer likely explanations of their irregularities. Moreover, we propose the significance of construction circles used for creating a triangulation grid.

Open access
Pollack Periodica
Authors:
Abdelkader Benbouaza
,
Youssef Regad
,
Hanae Azzaoui
, and
Samah Elrhanimi

Abstract

This study is devoted to condition-based maintenance using vibration analysis. It proposes a numerical and experimental methodology to assist in the detection and vibratory monitoring of chipping faults on gear teeth.

The aim of this work is to model the dynamic behavior of the gear link and to treat the vibration behavior of gear flaws theoretically and experimentally. This article is going to study the case of a breast gear, a defect located on the wheel, another defect on the pinion and the wheel and the insufficient center distance defect based on experiments carried out on a test bench manufactured in the laboratory.

Restricted access

Abstract

Climate change manifested its adverse impacts last year, with an extreme drought leading to a drastically low water level in Lake Velence, Hungary. Nature-based solutions have the potential to alleviate these impacts locally. While a few initiatives have been implemented in Hungary, widespread adoption of these solutions is expected to be a goal for the more distant future.

This research focuses on one catchment at Lake Velence to evaluate decision-maker's readiness and urban water management infrastructure for broadly implementing nature-based solutions. Methods include delineating the stormwater system and creating a numerical model to evaluate rainfall-runoff processes and the possible impacts of nature-based retentions. Surveys among local mayors were conducted to assess their perception of existing water infrastructures and implementations of nature-based solutions. Its widespread use may become significant, but its effect on the lake's water level remains negligible.

Open access

Abstract

This study focuses on the optimization dynamics of racing go-karts, which is heavily influenced by the frame's stiffness. Lacking suspensions and differentials, go-karts rely on the frame stiffness for wheel balancing and skid prevention by lifting the inner rear wheel during turns. Utilizing a rigid-flexible model in MSC Software ADAMS View, validated by frame deformation measurements, this research integrates finite element analysis with multibody techniques. The model, leverages computer aided design files for frame geometry and employs finite element analysis for frame validation. It facilitates evaluating go-kart dynamics through simulations, aiding in maneuver testing and design optimization. This approach provides a comprehensive framework for advancing go-kart designs.

Open access

Abstract

In China, the decline of industrial communities suffering from both the aging of physical space and the breakdown of social relations. How to make marginalized and closed industrial communities actively integrate into the development of urban renewal has gradually become an issue of concern.

The paper takes the “Jingzhou New Town Industrial Park Urban Design Project” as an opportunity to explore a transformation path suitable for China's national conditions through the study of the history, culture, current problems, and renewal strategies of this heritage-type industrial community.

The study finally proposes three renewal strategies for industrial communities, which provide samples with certain reference value for the renewal of old industrial communities.

Open access

Abstract

With the development of time, people have more emotional needs for interior spaces. Interior lighting design is an extremely important part of interior design, especially in children's healthcare. In order to meet the needs of child patients and healthcare professionals for ward lighting, it is necessary to comply with various standards while also designing emotionally, emphasizing the positive effects of light on the psychology and health of the user. A literature research approach was used to combine the current status of interior lighting in healthcare spaces, culminating in the integration of the concept of emotional design into the lighting design of children's wards.

Open access

Abstract

This study combines theoretical research and practical case studies to explore effective methods for renovating rural architecture within the context of Chinese new rural construction. By analyzing the current state of existing rural architectures, identifying their characteristics and shortcomings, and applying the theory of architectural semiotics, this study proposes an innovative model for rural architecture renovation. The aim of this research is to provide valuable insights and optimization strategies for the revitalization of rural architectures in China, ultimately contributing to the sustainable development of rural areas and the preservation of regional culture.

Open access

Abstract

Multi-layered walls are commonly used building elements that have the potential to reduce cooling loads by improving thermal insulation. This paper investigates the potential of reducing cooling load using different types of multi-layered. For this purpose, a model of a small room (1.15 × 1 × 1 m) was constructed. A software code based on the radiant time series method was developed using MATLAB to extract heat gain results. The results were verified with other researchers, and there was a 0.89% error. Overall, the results show that using solid or hollow bricks in construction can be an effective way to reduce heat gain, where Wall-C achieved the minimum heat gain of 60.8 W m−2 compared to 66.207 and 71.225 W m−2 for Wall-A and Wall-B respectively. The reasons for this could be due to the insulation hollow area provided by the bricks, which tends to reduce heat transfer through the wall.

Restricted access

Abstract

In artificial intelligence, combating overfitting and enhancing model generalization is crucial. This research explores innovative noise-induced regularization techniques, focusing on natural language processing tasks. Inspired by gradient noise and Dropout, this study investigates the interplay between controlled noise, model complexity, and overfitting prevention. Utilizing long short-term memory and bidirectional long short term memory architectures, this study examines the impact of noise-induced regularization on robustness to noisy input data. Through extensive experimentation, this study shows that introducing controlled noise improves model generalization, especially in language understanding. This contributes to the theoretical understanding of noise-induced regularization, advancing reliable and adaptable artificial intelligence systems for natural language processing.

Open access
Pollack Periodica
Authors:
András Greg
,
Gabriella Medvegy
,
Gábor Veres
,
Bálint Bachmann
,
Balázs Kokas
, and
Péter Paári

Abstract

The article represents a case study of the realization of changing engineering education in two new contemporary educational buildings of the University of Pécs, the impact of these buildings on educational methods, and the impact of community-based education on these buildings. As part of the university development program launched in 2016, the University of Pécs, Faculty of Engineering and Information Technology's campus has been expanded with new architectural education buildings. The task of the new buildings was to adapt to the directions of the new engineering education and the representation of education of its faculty. The engineering education influences the object of architecture and determines its operation and its layout.

Open access
Pollack Periodica
Authors:
Dilshad Mohammed
,
Victor Nagy
,
Márton Jagicza
,
Dávid Józsa
, and
Balázs Horváth

Abstract

The evolution of autonomous vehicles hinges significantly upon the advancements in driving assistance systems. Adaptive cruise control, a pivotal component of these systems, warrants continuous real-world examination to assess its operational efficiency. The study investigates these systems integrated into diverse commercial vehicles with a specific focus on the following distances they provide. The findings reveal that camera-based systems offer shorter following distances relative to ISO standards, while radar-based and combined camera and radar-based systems provide larger following distances. The study contributes to understand adaptive cruise control technology and its alignment with safety standards, thereby aiding in the on-going development of self-driving vehicles.

Open access

Abstract

Local soil conditions play a crucial role in shaping ground surface responses and impacting the intensity of ground shaking. In this study, the influence of different site profiles on computed ground motion was investigated using a 2D equivalent linear analysis approach. Four distinct site profiles: sand, clay, sand-clay-sand-clay, and clay-sand-clay-sand profiles were considered. The results were presented using multiple metrics, including surface acceleration, displacement, modulus decreasing ratio, and coherence analysis. Notably, the clay profile significantly influenced ground motion, while the sand profile exhibited relatively lower seismic activity. This suggests that softer sites significantly influence ground motion, leading to potentially high levels of shaking.

Open access

Abstract

The present investigation examined the impact of thermal cycling applied during the painting of sheet steels and the transfer period in the forming of W-temper heat treatment of high-strength aluminum alloy on springback. The U-draw bending test was conducted numerically and experimentally to examine the springback parameters. Pre-painted steel might be aged due to surface cycling during painting and it changes the mechanical characteristics. As a result, pre-painted steel becomes more susceptible to springback. It is also observed that springback is mostly reliant on the amount of transfer time between the W-temper forming of aluminum alloy. To sum up, the interplay among material characteristics, processing techniques, and forming conditions leads to the springback phenomena.

Open access

Abstract

Cylinder bore coatings are widely used in automotive internal combustion engines to replace cylinder liners. During the atmospheric plasma spraying process, the coatings are oxidized and controlled by the Si content of the steel powder used as the coating raw material. This phenomenon affects the technological process, the microstructure, and the properties of the formed coatings. The research aims to investigate how the Si content of two commercial grades of steel powder commonly used in industry affects the undesirable consequences observed in practice, such as clogging of powder nozzles or large variations in coating hardness. The analyses and industrial experiments show that increasing the Si content can contribute significantly to these undesirable phenomena.

Open access

Abstract

In the present study, a comparison has been conducted to investigate the efficiency of stitching using the near-surface mounted steel bars and externally bonded carbon fibers reinforced polymers technique for strengthening the T-deep beams having large opening within the shear spans and with deficient shear reinforcement. Eight specimens with two locations of openings were tested. It was found that stitching of beams by steel bars with openings located flush to the flange yielded improvement in capacity in range (10–39%). Furthermore, Stitching by external bonded carbon sheets yield enhancements in capacity was 96 and 78% for the top location compared to the control specimen and the vertical near-surface mounted stirrups system. The respective values for the bottom location were 62 and 42% respectively.

Restricted access

Abstract

How does architectural thinking make a difference in interior space? Is it just a formal difference? From two-dimensional decoration to three-dimensional space experience, this should be the biggest difference between the two. In simple terms, interior design pays more attention to decoration, while architectural design is basically functional design. If architectural thinking is applied to interior design, will it make the interior space more applicable, more scientific and more infinite? This paper combines a project of integrated architecture and interior design to interpret the infinite possibilities of architectural thinking in interior design. Several types and paradigms of architectural thinking in interior design are summarized.

Restricted access

Abstract

Mining industry once was a strong contributor to the economic development of cities and created economic benefits for human beings, but ecological problems are increasing day by day. This study takes the quarry in Nagykovacsi, Hungary as an example, and through comprehensive evaluation of the site, utilizes nature-based solutions to carry out the design practice of seeking new development vitality and opportunities for the brownfield site after mining. Finally, it summarizes the ecological remediation concepts and strategies suitable for mining brownfield sites, and contributes to the reuse of urban land space and the creation of a favourable ecological environment.

Open access

Abstract

Several biopolymer applications in geotechnical engineering have been adopted in recent years, notably dust control, soil strengthening, and erosion control. Although biopolymer soil treatment approaches can assure engineering efficiency while satisfying environmental protection standards, this technology requires more validation regarding site adaptability, durability, and economic feasibility. The influence of biopolymers on soil behavior is discussed within geotechnical engineering applications and practices, including soil consistency limits, strength and deformation parameters, hydraulic conductivity, soil-water properties, and erosion prevention.

Laboratory studies were performed to confirm the behavior of the treated soil, including Atterberg limits, proctor, and direct shear tests utilizing two types of biopolymers: guar gum and xanthan gum.

Open access
International Review of Applied Sciences and Engineering
Authors:
Éva Bácsné Bába
,
György Norbert Szabados
,
Szabolcs Gergely Orbán
,
Zoltán Bács
,
Renátó Balogh
, and
Sándor Kovács

Abstract

Many sports organisations operate as non-profits, but the emphasis and role of for-profits in this sector cannot be avoided. Today, sports activities are connected to the business sector and generate profit, hence, sports sector is a decisive part of the economy. Sport profile companies differ in their organisational strategy formulation approach. The main focus was to learn more about their strategy approach and market behaviour. 350 sports business organisations were involved in a survey of 3,248 companies, and the Chi-square test, variance analysis, and principal component analysis were applied to the sample. Results showed that 75.7% of the responding sports companies had no written strategic plan. The availability of written strategies seemed to depend on the organisation's scale. The market-following behaviour was confirmed in the case of smaller sports enterprises. Fitness service providers appeared to follow a market-leading behaviour. Growth, investment, and development naturally emerged as essential factors for companies with higher sales revenue and operating sports facilities, and they were relatively less important in sports goods production and trade. Most of the results showed that in the sports business sector, large-scale organisations focus on strategic-related issues more than other players in the industry.

Open access

Abstract

One critical issue in the tracking systems based on photovoltaic (PV) is how to harvest highest power of the photovoltaic array; particularly when the system is operating in partially shaded conditions (PSCs) or varying irradiances. This study proposes particle swarm optimization (PSO) hybridization and cuckoo search algorithm (CSA) methods for maximum power point tracking (MPPT). The effectiveness of the proposed algorithm is validated and examined under various irradiance patterns. A comparison study in performance has been conducted between the proposed hybrid CSA-PSO method with the conventional P&O and PSO techniques. Several tests have been performed based on numerical simulations utilizing the programming software MATLAB/Simulink. The results demonstrated that the suggested hybrid technique yields smaller tracking time, higher power and greater efficiency than those of other traditional algorithms.

Open access

Abstract

Composite materials are vulnerable to impacts that may occur during their use. Such transverse loads represent a significant threat to these materials because they can cause damage that is difficult to detect. Thus, understanding the mechanical behavior of composite materials during impacts is crucial for improving their damage resistance. Therefore, this study investigates the response of two commonly used composite panels in maritime transportation—a PVC core sandwich composite and a laminated GFRP composite—under quasi-static indentation (QSI). Using numerical simulations with Abaqus/Explicit, this investigation aims to anticipate mechanical characteristics and damage patterns during low-velocity impact. Results show a strong correlation between numerical and experimental data. The force-displacement curves aid in understanding damage sequences, with predicted maximum loads at 1.43% and 6.45% accuracy for laminated and sandwich composites. Both exhibit significant damage, including permanent indentation, matrix cracks, fiber fractures, and prevalent delamination around the impact point.

Open access

Abstract

This study evaluates metallic yield dampers, specifically slit steel dampers, for protecting steel beam-to-column connections during seismic events. Finite element model simulations were conducted for the damper and its connection. Analysis of circular parameters, like the radius slot, showed that appropriately sized slit dampers exhibit advantageous seismic behavior. Moment-rotation, hysteresis curves, and plastic stresses comparisons indicate efficient energy absorption. The maximum moment was 25% lower than conventional samples. The slit steel damper model with a ductility factor of 3.5 allows significant plastic deformation before potential failure. Results emphasize the slit damper's potential for optimal performance in steel frames, suggesting its use for efficient energy absorption.

Restricted access