Discover the Latest Journals in Architecture and Architectonics

Architecture is both the process and product of planning, designing, and constructing a building or structure, while architectonics is the scientific study of architecture itself. Architectural works are often considered important cultural symbols and works of art, and we often identify past civilizations with their architectural heritage.

Architecture and Architectonics

You are looking at 41 - 50 of 1,573 items for

  • Refine by Access: All Content x
Clear All

Abstract

Digital technologies had an effect on people's lives. The majority of these digital devices rely on cloud storage to meet their memory needs. Hundreds of thousands of images, videos, and audio files are being transferred to cloud storage. Thousands of people around the world access these media every second. Unauthorized access to these media must be avoided. One of the weak points for data breaches is the user-end encryption. This paper suggests a strategy for improving cloud data protection by combining the AES and blowfish encryption and decryption algorithms. AES-256 is used as the first layer, followed by blowfish as the second layer, in the hybrid solution. The output of the first layer is input to the second layer and the final result is analyzed. The proposed method also discusses other combined approaches such as AES with other traditional algorithms but the proposed method gives significant results compared to other approaches.

Open access

Abstract

Adenosine triphosphate (ATP) is an energy compound present in living organisms and is required by living cells for performing operations such as replication, molecules transportation, chemical synthesis, etc. ATP connects with living cells through specialized sites called ATP-sites. ATP-sites are present in various proteins of a living cell. The life span of a cell can be controlled by controlling ATP compounds and without the provision of energy to ATP compounds, cells cannot survive. Countless diseases treatment (such as cancer, diabetes) can be possible once protein active sites are predicted. Considering the need for an algorithm that predicts ATP-sites with higher accuracy and effectiveness, this research work predicts protein ATP sites in a very novel way. Till now Position-specific scoring matrix (PSSM) along with many physicochemical properties have been used as features with deep neural networks in order to create a model that predicts the ATP-sites. To overcome this problem of complex computation, this exertion proposes k-mer feature vectors with simple machine learning (ML) models to attain the same or even better performance with less computation required. Using 2-mer as feature vectors, this research work trained and tested five different models including KNN, Conv1D, XGBoost, SVM and Random Forest. SVM gave the best performance on k-mer features. The accuracy of the created model is 96%, MCC 90% and ROC-AUC is 99%, which are the same or even better in some aspects than the state-of-the-art results. The state-of-the-art results have an accuracy of 97%, MCC 78% and ROC-AUC is 92%. One of the benefits of the created model is that it is much simpler and more accurate.

Open access

Abstract

Scarcity of the construction materials, peculiarly the natural river sand has become a serious threat in the construction industry. Though many researchers of developed and developing countries are trying to find alternative sources for the same, the complete replacement of the fine aggregate in concrete is crucial. Geopolymer sand developed from the Industrial waste (Ground granulated blast furnace slag - GGBS) is an effective alternative for the complete replacement of the natural sand. The GGBS based geopolymer sand (G-GFA) was tested for physical and chemical properties. Upon the successful achievement of the properties in par with the natural river sand, the fresh properties (fresh concrete density & slump) and hardened properties (compressive strength, tensile strength & flexural strength) of the concrete specimens developed with G-GFA were studied. The G-GFA is obtained by both air drying (AD-G-GFA) and oven drying (OD-F-GFA) after the dry mixing of the alkaline solution and GGBS for about 10 min. Thus, developed fine aggregates were studied separately for the fresh and hardened concrete to optimize the feasible one. Superplasticizer of 0.4% is included in the concrete mix to compensate the sightly hydrophilic nature of the fine aggregates produced. The mechanical properties of the concrete with G-GFA are observed to be more than 90% close to that of the concrete developed with natural river sand. Thus, both the fresh and mechanical properties of the G-GFA concrete specimens resulted in findings similar to those of the control specimen developed with natural river sand reflecting the plausibility of G-GFA as a complete replacement choice to the fine aggregate in the concrete industry. The flaky GGBS particles merge well with the alkaline solution at room temperature itself since the former gets dried at elevated temperatures. Thus, more feasible fresh concrete properties and mechanical properties were recorded for the AD-G-GFA than the OD-G-GFA.

Open access

Abstract

Construction industry is one of the biggest sectors globally and a wide variety of materials are used to carry out various works. Particularly, cement is a material that is used in the construction of various structures and it is also the major source of emission of CO2 gas into the atmosphere which results in global warming. Many researchers have identified various replacement materials for cement as a partial substitution and carried out experiments successfully. Nano silica is widely utilized as a partial replacement for cement and a lot of research is carried out. This paper reviews the past studies in which nano silica is utilized in various building materials such as cement mortars, normal concrete and special concretes. The fresh concrete properties, strength and durability of the material are the parameters reviewed and it is apparent that by incorporating nano silica in cement it absorbs more water, which makes the mix less workable and it imparts additional strength to the concrete and also provides better durability when compared with the control specimen. Hence it has been revealed that nano silica will be a good replacement for cement as it is pozzolanic in nature and also possessing good microstructure.

Open access

Abstract

Our study aims to discover what reasons justify the physical activity of fitness consumers, and how the motivation of this physically active group can be maintained, which then may contribute to maintain a healthy society in the long run. Of the primary research procedures we chose to use the questionnaire survey method. We used cluster analysis for which we used principal components that were created with factor analysis to determine what groups can be established based on responses to the questions related to motivation and the factors that influence their choices of facilities. Based on the rank order of motivations influencing attendance of fitness sessions, fitness consumers were stratified into four different clusters. Then, segmentation of the consumers was done based on the factors influencing their choices of facilities. Our results lead to the conclusion that the motivation of consumer groups identified in our research can be sustained in the long run, the less active groups can be better involved and attracted to sports offered by fitness centres, on condition the fitness studios reliably serve these needs and provide the expected variety of services and hygienic conditions.

Open access

Abstract

Corrosion inhibition of steel by Polyurethane Extract-primer (PEP) containing plant leaf extracts was compared with Polyurethane Conventional primer (PCP) containing zinc phosphate and zinc chromate as inhibitors. The primers were investigated using gasometric technique in 5 °C steps of temperature increase from 25 to 50 °C in 1.0 M HCl as corrodent. The PEP of 34.24 percent actives compared with PCP of 56.35 percent actives gave the same inhibition efficiencies of 82.4%. Extract primers of low percent active concentration were more effective and less expensive than that of conventional primers.

Open access

Abstract

During service, notched designed components such as steam generators in the nuclear power plant usually experience fatigue damage at elevated temperatures, due to the repeated cyclic loadings during start-up and shut-down operations. Under such extreme conditions, the durability of these components is highly-affected. Besides, to assess the fatigue life of these components, a reliable determination of the local stress-strain at the notch-tips is needed. In this work, the maximum strains of circumferentially notched cylindrical specimens were calculated using the most commonly known analytical methods, namely Neuber's rule, modified Neuber's rule, Glinka's rule, and linear rule, with notch root radius of 1.25, 2.5, and 5 mm, made of modified 9Cr–1Mo steel at 550 °C, and subjected to nominal stress amplitudes of ±124.95, ±149.95, and ±174.95 MPa. The calculated local strains were compared to those obtained from Finite Element Analysis (FEA). It was found that all the analytical approximations provided unreliable local strains at the notch-tips, resulting in an overestimation or underestimation of the fatigue life. Therefore, a mathematical model that predicts the fatigue lives for 9Cr–1Mo steel at elevated temperature was proposed in terms of the applied stress amplitude and the fatigue stress concentration factor. The calculated fatigue lifetimes using the proposed model are found to be in good agreement with those obtained experimentally from the literature with relative errors, when the applied stress amplitude is ±149.95 MPa, are of 1.97%,–8.67%, and 13.54%, for notch root radii of 1.25, 2.5, and 5 mm, respectively.

Open access

Abstract

This paper presents a realization of fractional-order Band pass-filter (FOBF) based on the concepts of fractional order inductors and fractional order capacitors. The FOBF is designed and implemented using both simulation and hardware approaches. The proposed filter order is considered up to second order or less with any real positive number. One of the cases is considered when α ≤ 1 and β ≥ 1. In the second case, the filter is designed when β ≤ 1 and α ≥ 1. In order to calculate the optimal filter parameters, the modified Particle Swarm Optimization (mPSO) algorithm has been utilized for coefficient tuning. Also, a generalized approach to design any second order FOBF is discussed in this work. The realization and performance assessment have been carried out in simulation environment as well as in lab experiment with field programmable analog array (FPAA) development board. The experimental results indicate the value of efforts to realize the fractional filter.

Open access

Abstract

For the last few decades, the power sector has been restructuring throughout the world, and because of this, congestion is bound to take place in the network. Congestion can lead to market failure, violate transmission capability limits and high electricity prices, and end up threatening the power systems’ reliability and security. Increased congestion may also lead to unexpected price differences in power markets leading to market power. In a deregulated power market (DPM), the independent system operator (ISO)’s fundamental challenge is to preserve the power market’s reliability and safety by improving market efficiency when the network is congested. Therefore, congestion management (CM) is essential in DPM and is the key to the power system. This paper carries out a congestion management methods survey to bring together all recent publications in the DPM. It aims to help readers summarize progressive CM methods, along with traditional CM methods that have been discussed so far. In this paper, we have carried out a comparative survey of the various well-known CM methods.

Open access

Abstract

Flow-like landslides are a serious geologic hazard that can cause life and property loss all over the world. Mudflow is a kind of debris flow that has been classified as a non-Newtonian flow. The Smoothed particle hydrodynamics method (SPH) is a powerful tool for modeling fluids, such as debris/mudflows, which can be described in terms of local interactions of their constituent parts. In this paper, the Herschel-Buckley rheology model and SPH are used to simulate free-surface mudflow under the gate. The run-out distance and velocity of mudflow during the time are calculated with numerical simulation and compared with the laboratory result. Our results indicate the rate of increase of run-out and viscosity in the computer model is more than the experimental model and it is because of friction that is assumed to be zero. In the computer simulation, friction is exactly zero but in the experimental model, it could be measured and assumed zero. Finally, Abacus had a good result and can be used for mudflow simulation and protection of run-out distance and viscosity.

Open access