Discover the Latest Journals in Architecture and Architectonics
Architecture is both the process and product of planning, designing, and constructing a building or structure, while architectonics is the scientific study of architecture itself. Architectural works are often considered important cultural symbols and works of art, and we often identify past civilizations with their architectural heritage.
Architecture and Architectonics
Abstract
The present study aims to determine the effects of blending cementitious materials on the mechanical and durability properties of high-performance concrete (HPC). Densified silica fume and fine-grounded metakaolin are used as supplementary cementitious materials (SCMs). A total of 16 mixes containing both binary and ternary blending of SCMs were chosen for w/b ratios of 0.4 and 0.3 respectively. The hardened properties tested for the HPC mixes were compressive strength at 7, 28, and 90 days, flexural strength at 28 days, and modulus of elasticity at 28 days. Maximum strength gains up to 15%, 38%, and 23% for compression, flexure, and elastic modulus were observed in ternary mixes compared to binary mixes. Stress-strain behaviour of ternary mixes indicates increased tolerance of stress for the least amount of strain in the specimens. Based on the experimental results, empirical relations were developed and checked with the existing codes and by earlier researchers. The durability properties tested for HPC were water absorption at 28 days, acid attack, and sulphate attack at 28, 56, and 90 days. Ternary mixes improved the pore structure of HPC, resulting in a 56% reduction in water absorption and a 34% reduction in compressive strength loss due to immersion in 5% H2SO4 at 90 days. The findings of the study endorse that ternary blending of SF and MK can improve the engineering properties of HPC, and a mix containing SF 10% and MK 10% is recommended for the best results.
Comparative Study on the Optimal Topologies
Összehasonlító tanulmány optimális topológiákra
The topology optimization is a leading tool in structural design. Due to the rapidly spreading need of the industry, commercial software are available in the market. Generally, these software are suitable for solving one subtask (preprocessing, postprocessing, stress calculation, etc.) but need some user manipulation to interconnect to one that is better for some other subproblem. This is the reason why we write a study on the available software and make suggestions on their usability. The purpose of this research is to briefly introduce selected software such as Rhino 3D, Grasshopper, Peregrine, Karamba, Galapagos, polyTop and PolyStress using topology optimization theory. Due to the demand to apply them for industrial applications, the additional goal is to make suggestions to make these software programs more user-friendly and to create algorithms to connect with software used in the industry, such as Consteel. This work also discusses the connected algorithms and optimization methods such as layout optimization by Peregrine, and topology optimization by polyTop and PolyStress. Several illustrative videos are provided as supplements. In addition to the text of this paper one can see demonstrations of the applications by the use of the provided YOUTUBE links.
Real Net Vault or Pseudo-Ribbed Net Vault?
Geometry, Construction and Building Technique of the Vault of the Reformed Church of Nyírbátor and the Nave Vault of the Franciscan Church of Szeged-Alsóváros
Valódi hálóboltozat vagy bordákkal díszített donga?
A nyírbátori ferences templom hajóboltozatának és a nyírbátori református templom boltozatának geometriája, szerkesztés- és építéstechnikája
In the present article, we revisit the question of the structural characteristics and building methods of two of the most famous Hungarian Late-Gothic net vaults, the nave vault of the Franciscan Church of Szeged-Alsóváros and the vault of the Reformed Church of Nyírbátor. Based on the data gathered by laser-scanning the two buildings, the geometric system of the two vaults, as opposed to the former state of research, differ significantly from each other. While the rib system and webbing of the vault of Szeged-Alsóváros have features characteristic of pseudo-ribbed net vaults and net vaults with webbing built with formwork, the vault of Nyírbátor is likely a real net vault structure with webbing built freehand. Furthermore, the rib system of the vault of Szeged-Alsóváros can be described by a single curved surface deductible from a circle segment, the rib junction points’ spatial positions in the vault of Nyírbátor are only describable by coordinates in the three directions of the space, not by an even surface. Based on the geometric descriptions, we also attempted to reconstruct the plausible building methods in both cases. Finally, we considered the results of the geometric analysis and the underlying construction ideas deduced from it and gave a new evaluation regarding the earlier reasonings for the strong building connections of the two churches in regard to the guilds and master builders.
Az esztergom-belvárosi kálváriakápolnák és stációk összművészeti jelentősége
The Overall Artistic Significance of the Chapels and Stations of the Calvary in Esztergom-Belváros
A hazai századforduló építészetének egyik kiemelkedő emléke az esztergomi belvárosi Kálvária-hegyen található összművészeti együttes, mely két kápolnából és 14 épített stációból áll. A több évtizedes elhanyagoltság után néhány évvel ezelőtt megkezdődhetett az értékek kutatása és mentése, az alsó kápolnát sikerült részben felújítani, ám a felső kápolna ez év elején már az összedőlés határára került. Közösségi és egyházmegyei kezdeményezésre és a város vezetésének segítségével az utolsó pillanatban sikerült megmenteni. A tervezést és felújítást megelőző kutatásaink olyan építészeti és művészettörténeti gazdagságot tárnak elénk, melyek országos szintű értékek, bemutatásuk és védelmük közös feladatunk. A restaurátori kutatások és értékmentések megtörténtek, és megindult a rekonstrukciós munka is. E cikk alapvető célja, hogy a szakma és a közösség megismerhesse, magáénak érezhesse ennek az együttesnek hazánkkal összefonódott sorsát, mely nemcsak közös múltunk tanúja, de közös jövőnk záloga is egyben.
Finding Groundwater in East and West
Comparing Methods of Finding Groundwater in Al-Karaji’s Treatise on The Extraction of Hidden Waters and Vitruvius’s Treatise on The Ten Books on Architecture
Földalatti vízvezetékek Keleten és Nyugaton
Al-Karaji A rejtőző vizek kitermelése és Vitruvius Tíz könyv az építészetről című traktátusának összehasonlító elemzése a földalatti vízvezetékek tekintetében
Hydraulic systems were built by ancient civilizations, notably the Persians and Romans, to deliver water to their residences where the water supply was scarce. Qanats were invented by the Persians to transfer water from aquifers to the surface, and aqueducts were built by the Romans to transport surface or underground water from its sources to distribution points in cities. Finding groundwater is a similarity between these two historical systems. This research compares ancient methods used by Persians and Romans to locate areas with abundant subsurface water. The oldest existing historical documents that recorded ancient ways of tracking groundwater, Al-Karaji’s treatise on qanats and Vitruvius’ treatise, were investigated with the qualitative content analysis method. As a result, historical means are divided into two categories in these two treatises including natural indications and practical tests. Natural indications consist of mountains and rocks, features of steppes, plants, vapours and dew, the whistles of the wind, and alluvial fans. An inverted container, a fleece of wool, an oil lamp, and a fire are instances of practical tests. Although these two treatises were authored over a ten-thousand-year interval and the structures of water systems differ, there are commonalities between ancient methods of tracing underground water.
On the Buckling of the No-tension Material Masonry Column
A húzószilárdság nélküli téglapillér statikai modelljéről
Masonry columns, subjected to eccentric compression, crack due to tension if the eccentricity is larger than the size of the core of the section. Previous studies have assumed that the cracks have so small spacing that the cracked tension side can be neglected during the analysis.
The critical load can be determined using this assumption. However, experimental experience has shown that the cracks have large spacing, approximately equal to one and a half times the cross-section height. Therefore, the crack-free parts between the cracks influence the lateral deflection and the critical load. Considering the above-mentioned phenomenon, we determined the elastic critical buckling load of the cracked masonry column.
Abstract
The application of natural ventilation strategies in high-rise office buildings is considered one of the most promising trends to address high energy performance and enhance the indoor thermal comfort levels in interior office spaces. In this regard, this study attempts to assess the potential of natural ventilation strategies of a specific, previously investigated, envelope design of a high-rise office building located in a temperate climate zone. Different summer natural ventilation approaches were tested using the building energy simulation program IDA ICE 4.8, evaluating thermal comfort and energy demand. The findings indicated that considerable energy savings can be achieved, compared to conventional mechanical ventilation and air conditioning systems.
Abstract
Previous studies introduced the shiftability condition for successful gearshift, based on the dog clutch kinematics model containing several parameters. This study analyzes the effect of these parameters on the dog clutch shiftability. A method to study the impact of parameters is proposed. The influence of chosen parameter domains is shown. Their influence is recognized based on the shiftability map and the engagement probability. The initial relative position showed a periodic effect within one pitch region. The teeth number, axial speed, and the backlash positively affected the engagement probability, while the mismatch speed and the overlap distance showed a negative effect. The analysis showed lower limit values for the axial speed and the backlash but higher limit values for the mismatch speed and the overlap distance.
Abstract
The current research aimed to obtain mean pressure distribution over an air-inflated membrane structure using Computational Wind Engineering tools. The steady-state analysis applied the Reynolds-Averaged Navier-Stokes equations with the
Abstract
This research paper exhibits the design of a V-shaped cantilever beam as a micro Energy Harvester (EH) having Piezoelectric (PZT) as its energy source for biomedical applications. PZT source based materials have the ability to convert the mechanical energy into electrical energy. Low-power biomedical devices mostly operate using electrical energy (i.e. batteries). But batteries are treated as a bio-hazard due to the massive use of biomedical applications. To overcome this toxic bio-hazard, the proposed PZT based V-shaped cantilever beam of micro EH can solve the limitations. To perform the experimental work, the cantilever beam design parameters - length, width and thickness have been considered and simulated using COMSOL Multiphysics to get the resonant frequency of 156.19 Hz which is lower than previous research work. It was observed that the obtained lower resonant frequency can be converted into AC voltage (mV) using PZT material. To convert the output AC voltage (mV) into DC voltage, a circuit of an Ultra-Low-Power (ULP) EH will be designed in LTSPICE software. Finally, the integration of the both V-shape cantilever beam and the ULP EH circuit will be implemented in PCB hardware to generate the output power (10 µW), will be stored in super-capacitor for biomedical devices-pacemaker.
Abstract
The multi-aquifer system of the Nubian aquifer in central Sudan hydrogeological system was simulated using a three-dimensional steady-state model. The goal of the study is to detect the effect of pumping on the groundwater flow and thus, the aquifer productivity. The conceptual model of the study area was built based on the available geological and hydrogeological data guided by geophysical survey. Processing MODFLOW numerical code was used to calculate the hydraulic head and water balance under the existing boundary conditions. The model accurately simulated the hydraulic head with a determination coefficient of 0.88. The calibrated model indicated that the change in storage is 0.56 m3/day indicating the study area constitutes highly productive zone and is recommended for groundwater developments.
Abstract
The digital economy is increasingly seen as an essential cornerstone in developing national strategies and industrial policies to enhance national competitiveness. On the other hand, a realistic assessment of digital readiness is essential for developing appropriate policies. In our paper, we group the countries of the European Union (EU) using three different methods applied to a dataset consisting of the four main dimensions of the EU's Digital Economy and Society Index (DESI) in order to identify Europe's main geographical “fault lines” in terms of digital readiness. DESI is a composite index aggregating several digitalization-related indicators to benchmark the progress of digital transformation in each member state. However, our methods aim not to rank countries but to identify groups of countries that are close to each other. The three methods used in the paper are partially ordered sets (poset), Tiered Data Envelopment Analysis (TDEA), and cluster analysis, known from multivariate statistics. The three types of clustering show a high degree of similarity, indicating the robustness of the results. Another research question relates to the extent to which the digital development of the EU Member States corresponds to the economic development of the countries and core–periphery relationships. While we can observe a high degree of similarity between the more and less developed clusters in terms of digital readiness and the groups that can be identified in terms of economic development and institutional quality, we also notice some peculiar exceptions (which could provide examples of best practices).
Abstract
In the event of a flammable liquid, gas, or vapor release the first step is to identify the type of outflow, which can fall into two categories sonic or subsonic. The two types of outflows carry different flow characteristics, which effect on the extent of the potentially explosive areas. In case of subsonic outflow, a short jet is formed without turbulent flow conditions at low velocity, which appears more concentrated around the source of release. With sonic outflow, a high velocity jet is formed with turbulent flow properties, which can extend further away from the source of release. The simulations examine the lower explosion limit of the flammable medium around the vessel where LEL20% or LEL40%. In addition, high temperature methane gas release was also presented.
Abstract
There is currently no accurate calculation procedure for determining the lateral-torsional buckling resistance of trapezoidally corrugated web girders. Therefore, a detailed investigation is performed in the frame of an experimental and numerical research program at the Department of Structural Engineering of the Budapest University of Technology and Economics. Based on the previous experimental results, a numerical model is developed to be used to determine the lateral-torsional buckling resistance by using deterministic method. The effect of flange size, corrugation geometry and boundary conditions are investigated. An improved design method is developed for the determination of the lateral-torsional buckling resistance of trapezoidally corrugated web girders.
Abstract
Analyzing the capacity of a signalized circular intersection is an essential aspect of traffic flow management. With the increased number of vehicles at the intersection, it is preferable to examine ways to increase capacity without altering the existing geometric features. A signalized circular intersection on the national highway in Győr, Hungary, between 47° 40′ 43.7988″ N and 17° 39′ 37.6668″ E is chosen and analyzed for capacity enhancement. The survey is conducted using 360-degree cameras. The PTV Vissim software is then used to construct a model based on the current and projected vehicle counts, as well as the current and proposed options. The result shows that it is possible to increase the capacity of signalized circular intersections without altering the geometric features.
Abstract
Under the background of modernization, the continuation and development of historical and artistic values of ancient villages are faced with many difficulties, and corresponding theories are needed to guide practice. Taking Baojing Village in China as an example, this paper studies and expounds on the strategies for the protection and development of ancient villages, establishes a coordination mechanism for all parties and provides experience for the difficulties faced by this field. In the past, most Chinese ancient village literature studies focused on the characteristic value, formation, and evolution of historical and cultural villages. However, the research on the integration and utilization of resources in historical and cultural villages still needs to be further deepened.
Abstract
Due to significant industrialization, many countries have adopted the practice of industrial symbiosis, which involves utilizing the waste produced by one industry as a resource for another industry. The utilization of spent foundry sand (SFS), which is derived from the metal casting industry, poses a significant risk to both the environment and living organisms as a result of the existence of inorganic and organic substances. Nevertheless, this waste material can serve as a valuable resource for the construction sector. The utilization of SFS is significantly restricted due to insufficient comprehension of its concrete performance, despite its extensive range of applications. It is imperative to comprehend the behavior of spent foundry sand in concrete, particularly in relation to achieving a structure that is both strength-efficient and durable. The current study explores the usability of M-sand and spent foundry sand in self-compacting concrete. Reference concrete was produced by replacing river sand with 100% M-sand. M-sand was substituted with spent foundry sand in ratios ranging from 0 to 30%. Compared to the reference mix, SCC's mechanical and durability properties with 20% SFS were better. In comparison to the reference mix, SCC containing 20% SFS had higher mechanical and durability characteristics at 3, 7, 28 days, and 28 days, respectively. With 20% SFS, replacement showed better mechanical properties at all curing ages and better durability performance at 28 days of the curing period.
Abstract
The driver's eye height from the ground, as what drivers can see on the road, is essential for their safety and for avoiding road hazards. Using the statistical analysis of vehicles sample, the statistical parameters of the measured set of values were determined. A one-sample t-test was done to check whether the measured sample differs from the driver's eye height value specified in the Hungarian design guidelines. A new range of driver's eye height has been found, which is considered an update to the current value and might be applied in the upcoming road design. Parallel with the eye-height analysis, sight distances at vertical crest curves were modeled by AutoCAD Civil 3D. The minimum radiuses of the crest curves were defined for human eye height and for sensors of autonomous vehicles.
Abstract
Control of OHS risks in the mining industry has been attracting increasing attention in recent years. Because of their great diversity in a complex system, hazards can be difficult to identify and classify, especially when system components interact. Risk cannot be managed successfully without comprehensive investigation of all its aspects. A coherent and integrated classification for identifying and categorizing all hazards is currently lacking in mining. We propose an integrated system classification of OHS hazards in mining based on our review of 44 studies retrieved using PRISMA. Considering Canadian and international standards, regulations and conventions, new hazard categories are proposed and hazard prevention is discussed from 12 perspectives: physical, chemical, biological, ergonomic, accident and psychosocial risks, as well as policy, legislation, management, design, geography, and uncertainty, with reference to each of the four phases of a typical mine life cycle, the hazards were shown in a portrait. This paper provides suitable categories based on rational data for creating a portrait in order to OHS hazards prevention in life cycle activity in mine.
Abstract
This paper aims to recognize the effect of material waste on cost increase in Palestinian construction projects. The study used questionnaire survey to achieve its objectives. The target population of the study are constructors and consultants involved in construction projects. The study also predicts the effect of cost overrun on material waste in some construction activities, namely: ceramic and brick works. The collected data were analyzed using statistical analyses. The study has established that among the various factors that affect cost overrun, experience in the line of work, conflicts among project participants, payments delay, and political situation are the key factors. While the analysis revealed that the main material waste factors are: poor site management, using untrained labors, rework due to workers' mistakes, selecting the lowest bidder contractor/subcontractor, and frequent change orders. Data from 55 building projects constructed in the West Bank between 2015 and 2020 were collected to test the relation between material waste and cost increase. Two mathematical models were developed: Model (l) links cost increase and waste in ceramic works. It indicates that if waste increases by 1%, the cost will increase by 1.07%. Model (2) links between cost increase and material waste in brick works. It tells that if waste increases by 1%, cost will increase by 1.25%. R square of value >0.7, for both models, indicates a strong linear relation between cost increase and material waste. This is the first study that predicts the effect of material waste on cost increase in Palestinian construction sector. The study encourages different parties related to construction projects to manage factors of cost overrun and material waste to enhance the sector of construction.
Abstract
High-performance internal combustion engines are subject to severe torsional vibrations which result from uneven gas and inertial loads. Fatigue damage occurs if the frequency of these undesired oscillations matches the resonance frequency of the crankshaft and the driven engine elements. This phenomenon can be avoided by the application of visco-dampers whose working fluid is high-viscosity silicone oil. Since silicone oil is exposed to a significant amount of heat load during operation, it is essential to calculate the temperature distribution in a relatively easy, quick, and cost-efficient way for lifetime estimation purposes. The aim of this article is to develop a reliable, fast, and accurate finite difference-based numerical method for steady-state thermal calculations for arbitrary damper sections. The developed MATLAB code calculates the temperature field of the damping fluid together with all components in a radial cross-section at given operational conditions. The accuracy of the developed thermal calculation method has been tested in a 3-dimensional – 2-dimensional two-step verification process by finite element and finite volume-based advanced engineering software in ANSYS environment. Furthermore, the original Iwamoto equation available in the literature has been updated to provide more accurate surface temperature results based on the simulations' outcome gained by the finite volume method.
Abstract
Effects of autonomous trucks' different lateral wander modes have been analyzed in this research using a dload subroutine. Two lateral wander modes, a zero-wander mode in which a truck is programmed to follow a predetermined wheel path without any lateral movement and a uniform wander mode, where the truck uniformly distributes itself along the lateral width of the lane, are used. European class A40 truck has been modeled in ABAQUS code. Results show that fatigue life of pavement increases by 1.45 times if a uniform wander mode is used, which corresponds to a decrease in fatigue life of 14 months if a zero-wander mode is used. In case of rutting progression, 40% acceleration of rutting happens under a zero-wander mode. In case of uniform wander mode, rut depth decreases by 1.25 times against the zero-wander mode.
Abstract
Wastewater treatment systems are important sources of contaminants of emerging substances, including pharmaceuticals, and personal care products. Onsite wastewater treatment systems provide alternative solutions to centralized systems; although they are becoming increasingly popular, little is known about the effect of maintenance on their performance. In the current study, chemical and microbiological parameters in the effluents from two identical on-site wastewater treatment systems were analyzed, one being properly maintained while the other not maintained at all. Taxonomic profiles vastly differed from each other, and organic micropollutants are present at higher concentrations in the effluent of the non-maintained unit. The results highlight the importance of proper maintenance.
Abstract
Ethiopia's government proposes paving existing roads or building modern intersections in cities to reduce maintenance costs. An unimproved signalized intersection at 6° 51′ 47.9″ N and 37° 45′ 50.1″ E is selected for this research. Cost-benefit analysis is used to evaluate the proposed innovative approach to designing and implementing an intersection and to compare whether the new road projects will have an adequate return. This research suggests converting the current intersection into a signalized roundabout to calm traffic. Signalized roundabouts have a higher net present value and a modified internal rate of return than improved signalized crossing intersections. Considering the country's high inflation rate, three scenarios recommend using a signalized roundabout.
Abstract
U-bending tests are the most common method to predict springback and are influenced by the process and geometrical variables in addition to material behaviour. It needs a numerical study at a high level with many variables to reduce try-out time and loop. In this study, the U-bending test of DC01 steel has been researched numerically and experimentally to govern the influential parameters. The numerical analysis was conducted using AutoForm-Sigma code. The die radius has an excessive influence on the change of flange angle than the punch radius, but the punch radius has the greatest influence on the variation of the sidewall angle. The coefficient of friction played a great impact on both flange and sidewall angle deviation and its influence grows stronger as the blank holding force increases.
Abstract
In this paper, a parametric study is done with various removal and replacement materials to study the effectiveness of the removal and replacement method on the wetting depth in the expansive soil and the amount of differential heave caused by climate conditions and common irrigation scenarios for the southern region of Syria. Soil suction changes and associated soil deformations are analyzed using finite element codes, VADOSE/W and SIGMA/W. The paper concludes that the optimum thickness for replacement with high permeability soil should be at least 1 m. In addition, it concludes that replacing soil with a permeability coefficient lower than the permeability coefficient of the site soil contributes to a 56% and 79% reduction in total and differential heave, respectively.
Abstract
This paper describes a novel hybrid technique with fractional order PID controller (FOPID) for simultaneously controlling the humidity of indoor air temperature and the direct expansion (DX) air conditioning (A/C) system. The proposed hybrid system is a joint performance of the butterfly optimization algorithm (BOA) and adaptive network fuzzy inference system (ANFIS), hence forth it is called BOANFIS Technique (BOANFIST). The purpose of the proposed system is to disconnect the temperature and humidity control circuits. The proposed control is modeled and replicated on MATLAB platform and is assessed using existing systems. The statistical performance of the proposed and existing systems of mean, median and standard deviation is also evaluated. It reduces computational time up to 1.01 s and also reduces energy consumption to around 16.42 KWh/day. Furthermore, the simulation outcomes suggest that the proposed technique may efficiently and accurately obtain the optimal global solutions of the proposed technique compared to existing systems.
Abstract
The most flexible and reliable technological system is Wi-Fi, which is made possible by a wireless connection that transmits data using radio frequencies. Wi-Fi networks, however, encounter numerous issues related to power supply, availability, efficiency, and security as a result of the various access points. While relational waves describe the medical device, Wi-Fi radios produce radio waves that are very dangerous for patients. This document offers line-of-sight communication between the transmitter and receiver using LED technology. Li-Fi technology is a method that transmits audio data using LED light, which is faster and more efficient than Wi-Fi. Since it is practically ubiquitous, light can be used for communication as well. A cutting-edge technology called optical communication includes a subset called light fidelity. By sending out visible light, the Li-Fi device enables wireless intranet communication. This paper is an in-depth study and analysis of Light Fidelity (Li-Fi), a novel technology that transmits data at high speeds over a wide spectrum by using light as a medium of transmission. The research fields that are pertinent to Li-Fi networks are thoroughly analyzed and categorized in this paper: high speed data transmission, receiving, sharing, broadcasting through light in free space optical communication system by Li-Fi technology. In this paper, we followed some methods and developed a unique method to develop this study: VLC, OOK, a Lambertian discharge mechanism, LOS, NLOS, or a CMOS optical receiver. The proposed model tested transmits and receives audio, video, and other data, which is very high-rated and near the 2 GB/s range.
Abstract
The aim of the paper is to supply updated air convective coefficients
Abstract
Increasing the number of electrical vehicles determine an increasing of electrical vehicle chargers number too. The best situation is reach when the zero emission vehicles are charged with electrical energy produced by solar panels or another green energy. This paper presents a solar electric vehicle charger system with energy storage capabilities. The system should be considered as a combination of three systems: solar energy production system, energy storage system and electric vehicle charger system. One of the novelty of the system is that for energy storage is used a 2nd life Nissan Leaf electric vehicle battery. The paper gives information about, simulation and measurement of the annual solar energy production of the system, measurements results of the currents, voltages and powers of the system, and a distribution of the maximum daily energy production.
Abstract
Visegrád is one of the smallest towns in Hungary with 1800 inhabitants, which was given the status of town because of its historical importance. Archaeological excavations revealed the remains of the medieval town's former main square and the surrounding buildings. Based on the archeological research the new town center was designed by the A+ Architect Studio and won the Pro Architectura and ICOMOS awards in 2016. Years later the need arose to expand the Áprily Lajos Primary School, which is located next to the site, and to accommodate new classrooms, special training rooms, and music school practice rooms in a new, modern building. The new three-story school building on the street frontage was constructed on the former place of a century-old, dilapidated building and was also designed by A+ Architect Studio.
Abstract
Multi-agent simulation has received a lot of attention in recent years as an emerging design method. To improve the accuracy of the simulation results, the authors provide an optimization scheme that combines multi-agent simulation and visibility graph analysis. Investigate how to improve forecasting accuracy through model optimization.
Abstract
Growth of the world population and the globalization of trade are the origins of the fourth industrial revolution, called “Industry 4.0”. What engineers call systems are becoming more and more complex as businesses strive to stay competitive and meet ever-changing demand. While automation and information digitization and transmission technologies are increasingly becoming major assets in modern industries, the changes they bring are having an impact on the management of occupational health and safety.
The aim of this article is to provide an overview of the progress achieved in the understanding of complex systems and to test some of the published theory by comparing it to a case study. The major scientific databases were searched to retrieve the literature on complexity, and a large company in the steel products business was queried to determine how its complexity as perceived by its managerial staff compares to the theory of complex systems.
Our main conclusion is that, based on the data gathered in the case study, the perception that the managerial staff has of the company corresponds closely to the current definition of complex systems as proposed by researchers. However, it remains to be determined whether this correspondence holds over the range of business sizes.
Abstract
Drones, specifically quadcopters, have increased in importance during the last years due to their wide range of applications, from civil applications to military employment. One of the most important issues in quadcopters is the efficient control system. While many researchers have dealt with building control systems for symmetric quadcopters, this work presents an efficient control system for asymmetric quadcopters using evolutionary computations. The problem is well-defined throughout the paper, and the methodology is explained in detail in the respective sections. A genetic algorithm is used to tune the weighting matrix of the control system after formulating the control system as an optimization problem. The genetic algorithm was fast and active to increase the performance of the proposed system.
Gondolatok az épületkutatásról
Thoughts on Building Archaeology
ÖSSZEFOGLALÓ
A dolgozat összefoglalja az épületkutatás történetének legfontosabb korszakait Magyarországon, kezdve Schulek Frigyes és Möller István meghatározó munkásságától Dávid Ferenc és Tóth Sándor kutatói tevékenysége elméleti alapjainak a bemutatásáig. Elemzi a kutatás tartalmi komponenseit és bemutatja a speciális szakmai ismereteket, amelyeket szükségesnek tartunk a szakszerű eredményeket produkáló feladat végrehajtásához.
Tipizált térrendszerű és szerkezetű, aulás általános iskolák Magyarországon az államszocializmus idején
Aula Centered Primary Schools with Type Designed Layout and Structure in Hungary During the State Socialist Era
ÖSSZEFOGLALÓ
1945 után, a háborús pusztításnak köszönhetően Magyarországon hatalmas hiány mutatkozott oktatási épületek tekintetében is. Ennek köszönhetően elindult az iskolaépületek tömeges építése, mely kezdetben központilag elkészített típustervek alapján történt a legtöbb esetben. Egyszerű alaprajzú és szerkezetű iskolák épültek országszerte, melyeknek uniformizált, a településképbe sokszor nem illeszkedő megjelenése a lakosság és a szakma ellenérzését is kiváltotta. 1968-tól kezdve a tervezőknek lehetőségük nyílt a típustervektől való eltérésre, amelyre addig csak alkalmanként kaptak teret. Ezzel a jelentős változással párhuzamosan az állami tervező vállalatok lehetőséget kaptak iskolák építésérére használható, előregyártott rendszerek fejlesztésére. A Borsod Megyei Állami Építőipari Vállalat (BÁÉV) és az Északmagyarországi Tervező Vállalat (ÉSZAKTERV) az addig iskoláknál legtöbbször alkalmazott, hagyományos folyosós-cellás alaprajzi rendszer helyett a tanulók közti közösség kialakulása szempontjából előnyösebb, aulás rendszerű iskolákra dolgoztak ki típustervet, országos szinten egyedülálló módon. Jelen cikkben a rendszer, annak előképei, alkalmazásai és jelenkori megítélésük értékelésére kerül sor. Az írás egy, az ÉSZAKTERV-vel foglalkozó átfogó kutatás részeként készült.
A zsámbéki Öregtemplom építőanyagának vizsgálata: esettanulmány
Experimental Test on the Building Material of the Old Church in Zsámbék: A Case Study
A zsámbéki romtemplom az ország egyik legismertebb műemléke. Története során számos alkalommal átépítették, felújították már mielőtt lepusztult volna. Azóta már több terv is született, hogy milyen irányba kellene a rom hasznosítását terelni. Ezek széles variációkkal rendelkeztek, attól kezdve, hogy legfeljebb csak állagmegóvás legyen egészen odáig, hogy teljesen visszaépítsék. Időről időre előkerül mindig ez a kérdés. Ez az esettanulmány is egy tervezés előtti felmérés keretén belül született. A tanulmány a rom építőanyagainak, főleg az eredeti kőanyag és habarcs vizsgálataival, azok mostani állapotával foglalkozik. Egy átfogó felmérés is készült a templomról, amely feltérképezi, hogy hol, milyen anyagból áll a szerkezet.
Abstract
The manufacturing of cement liberates the green-house gasses into atmosphere. To overcome this problem so many alternative materials has been invented by researchers to minimize addition of cement. The incorporation of these alternative materials as cementitious material in concrete enhances the attributes of concrete. In this scenario metakaolin gained momentum as a substitution to cement in concrete. Most of the researchers studied the performance of concrete incorporating metakaolin as cementitious material in normal curing conditions. There is a need for analysing the impact of accelerated curing on properties of concrete by incorporating metakaolin as cementitious material. The current construction industry needs high early strength for removal of form work in early ages. The accelerated curing is a method which provides high early strength. In this study, different proportions of metakaolin are added as partial alternative to cement and cured in accelerated curing tank for 3.5 h. The strength parameters test, durability test, and micro-structural parameter tests are performed on these samples. Further, micro-structural analysis has been carried out using SEM, and EDX tests. Results depicted the incorporation of 15% of metakaolin as substitute to cement amplifies the overall performance of concrete in accelerated curing regime.
Abstract
A computational fluid dynamics numerical model addressed the problem of local scouring and deposition calculation for non-cohesive sediment and clear water conditions near single and double cylindrical piers. The numerical results of single cylindrical piers correlate very well with the physical model's results while are higher than the case of the double pier, especially when the large-eddy turbulence model, the van Rijn bed-load transport equation, and fine mesh size are considered. Additionally, the final numerical predictions are compared to experimental data after parameters effectiveness explores the range of results based on projected user inputs like the bed-load equation, mesh cell size, and turbulence model.
Abstract
The thermo convective instability of the Darcy-Benard problem (DB) using Robin (third-kind) thermal conditions is investigated here. We consider a viscous Newtonian fluid saturating a porous layer in which the layer is sandwiched between two impermeable boundaries. The upper and the lower walls are modelled in the form of the Neumann (second-kind) and the Robin (third-kind) thermal conditions, respectively. The difference in the temperature distribution between both phases allows the lack of a local thermal equilibrium model to be present. As a consequence, the third kind of thermal condition brings about one extra dimensionless parameter of the Biot number to the usual one of the inter-heat transfer coefficient and the thermal conductivity ratio. The normal modes method adopted in a linear stability analysis gives rise to perturbed governing equations. The eigenvalue problem is handled numerically as a result of the perturbed governing equations leading to the marginal stability condition.
Kismarty-Lechner Jenő templomépítészete •
A két világháború közötti katolikus templomépítészet útkeresései
Church Architecture of Jenő Kismarty-Lechner •
The Attempts of Renewal of the Roman Catholic Church Architecture in the Interwar Period
Kismarty-Lechner Jenő templomtervezői pályája 1916-ban indul – s ha a templomátalakításokat is számba vesszük, akkor az 1950-es évekig hatalmas ívet ír le tevékenysége, mely sok esetben nem választható el oktatói pályájától és műemlékes munkáitól. Templomtervezői munkásságának tetemes része a két világháború közötti időszakra tehető, mely egyben a korszak stíluspluralizmusának kiváló reprezentánsa. Esetében igen széles spektrum rajzolódik ki a pártázatos reneszánsztól kezdve a neoklasszicizmuson át a magyaros és nemzeti tendenciák újraértelmezésén túl a modern templomépítészetig, melyben máig kiemelkedőt alkotott. Kismarty recepciójához hozzátartozik, hogy lényegében a legtöbb szakirodalom az építész gazdag alkotótevékenységére helyezve a hangsúlyt a változatos stílusokban tervezés mellett a magyar szecesszió továbbéléseként, a magyar nemzeti stíluskeresés egyik állomásaként értékeli, kiemelve, hogy az önálló építészeti formanyelv megteremtésének forrásait inspiratív módon a felvidéki / felső-magyarországi pártázatos reneszánszban és a magyar népi építészetben találta meg. Emellett a kutatás során összegyűjtött és a korszak templomépítészetének tükrében értékelt épületei és tervei azt mutatják, hogy Kismarty-Lechner Jenő a modern templomépítészet létrejöttében jelentős szerepet játszott. Jelen kutatás törekszik Kismarty-Lechner Jenő hatalmas templomépítészeti munkásságát folyamatában, a források tükrében bemutatni s a különféle gyűjteményekben megőrzött terveit egymás mellett vizsgálni.
Abstract
Usage of single use plastics has been rapidly increasing in the recent past and it is challenging to dispose of these plastics safely, since they are non-biodegradable. Especially, Polyethylene Terephthalate (PET) which is widely used in the form of water bottles cannot be easily recycled or reused. On the other hand, construction projects require sustainable materials having good strength, accordingly various studies have been conducted to reuse plastic wastes in the concrete and positive results have been obtained. In this study, the crushed PET bottles are partially substituted with fine aggregates and water hyacinth is added as a bio plasticizer in concrete. The concrete specimens are cast by substituting PET aggregates with the fine aggregates at 2, 4, 6, 8, 10% and water hyacinth is added at 10 & 20% by weight of water. The specimens are tested and it is noted that with the addition of PET aggregates up to 4% the strength of the concrete increases and beyond 4%, strength of the concrete gradually decreases, and addition of water hyacinth enhances the strength of the concrete.
Abstract
In this paper, a novel hybrid technique is proposed for transient stability analysis on grid connected Wind-Diesel-PV hybrid system. The proposed hybrid methodology is combination of the dwarf mongoose optimization algorithm (DMO) and the recalling enhanced recurrent neural network (RERNN) named DMO-RERNN. The main purpose of this work is to consider various elements on hybrid system for the analysis of transient stability according to different conditions. The voltage profile of hybrid system is enhanced using the proposed unified power flow controller (UPFC), which also has higher performance improving transient performance compared to the conventional ANN, PI and fuzzy-sliding mode controller. Considering the proposed technique, DMO is used to find the optimal global solution for the fault predicted by the RERNN approach. The proposed system is executed on MATLAB work platform; its performance with existing systems is analyzed. The result proves that the proposed hybrid technique based UPFC controller provides better results compared with other existing technique. The efficiency of the PI is 82.136, ANN is 77, Fuzzy Sliding Mode is 65.097% and proposed technique is 97.99038%.
Abstract
The design of the envelope in high-rise office buildings is a task of great importance as it can impact the entire building's energy performance. The study presented in this paper is an extension of a previous work reporting on the optimization of the façade and the shading systems of an east-west facing high-rise office building. This study aims to investigate the façade geometry design factors for other potential orientations, e.g., south, south-east, and south-west directions. The IDA ICE 4.8 complex dynamic building energy simulation program was used to assess thermal and lighting simulations. The optimization results revealed the best-performing façade configurations, appropriate for each orientation examined in terms of thermal comfort, visual comfort, and energy consumption.
Abstract
The pylon is an essential part of lower limb prosthetics. It is usually made of titanium, aluminum, and steel. However, it is expensive and difficult to be available in developing countries, especially for children who suffer from amputation. Moreover, they constantly need new pylon pieces during close periods due to the growth and increase in the child's length.
Purpose
This study aims to design an adjustable pylon that can change in length to suit the increase in the length of the healthy leg of the child without the need for a new pylon and reduce the economic cost.
Design/methodology/approach
In this study, an adjustable pylon model was designed using the CAD software (Solid work) and work to manufacture the pylon from low-cost materials (carbon fiber filament) capable of bearing the amputee's weight, and manufacturing printed parts by using additive manufacturing technical (CREALITY CR20 3D printer).
Findings
The results showed that the pylon is successful in design and strength as it bears the patient's weight without any failure or buckling, and the proof that the maximum amount of stress generated is 27.8 MPa, which is far from the value of the yield stress.
Originality/value
The design of the adjustable pylon prototype offers good strength and ability to bear the patient weight, reducing the cost and time of manufacturing.
Abstract
The common feature of streams in steep sloping watersheds is that there is a significant change from base-flow to flash-flood; sometimes two or three orders of magnitude. In Hungary, these streams are usually ungauged, with lack of available data, and models. The watershed features both urban and natural land use conditions, but the main area is quite homogenic.
This paper evaluates the impact of different model parameterizations, and rainfall duration on flash-flood events in the Morgó-creek watershed. The goal is to find the main parameters that can represent the uncertainty of a flash-flood sensitive area, and how the calibrated and determined parameters take effect on a model if these values are shifted on given intervals.
Abstract
Nowadays, the use of plastic is very widespread, especially in packaging materials. Most packaging materials are made from fossil-based polymers, which contribute significantly to greenhouse gas emissions. The unprecedented leakage of single-use plastic waste into the environment is a major problem, with negative impacts on both ecosystems and human health. In this study we examine the development of packaging waste and recycled packaging in the European Union over a period of more than 20 years, highlighting changes in the regulatory context; assess the achievements of Hungary so far and forecast the expected developing of packaging volumes and recycling rates; and consider recycling and waste reduction options, including alternative sustainable packaging options. Our forecast based on the evidence shows that Hungary (47.62%), Germany (61.46%), Malta (26.27%), Romania (58.64%) and Croatia (49.41%) are not expected to reach the target set (65% by 2025) in EU legislation. Out of the 27 countries surveyed, 6 (Belgium 88.2%, the Netherlands 87.81%, Luxembourg 76.96%, the Czech Republic 77.79%, Finland 78.75% and Denmark 83.7%) exceeded the expectations, so we show their waste management and waste recycling good practice, as they can serve as good examples for Hungary and other countries.
Abstract
In this paper, a comprehensive statistics-based review of islanding detection methods (IDMs) in microgrids (MGs) is presented. Islanding detection is the situation of isolating the MG from the main grid whether programmed as a result of load managing purposes or un-programmed due to the occurrence of faults. Islanding detection is a vital issue in MG's analyses due to the prevention of subsequent protection problems in the power system. In other words, when the MG's operation mode changes, the current passing through the protective devices changes subsequently and the protection system should be able to adapt the new settings to the protective devices. So, IDMs are vital for electrical engineers to overcome the abovementioned protection issue. This review paper surveys the existing literature in IDMs by concentration on total publications, type of publications (journal, conference paper, or book), five authors with the highest number of publications (including the affiliations), and five most published sources. Also, the five most cited publications and state-of-the-art IDMs are investigated in detail, utilizing some known and novel categorizations. This paper will be useful for the MG's researchers to know the most desirable IDMs, especially in recent years, and provides an insightful overview for future studies.
Abstract
This study revealed the system of a lower limb exoskeleton created for knee rehabilitation. The exoskeleton has been extensively used in rehabilitation robotic device research, but its practical applicability is limited due to its high nonlinearity and uncertain behavior. As a result, the control technique is critical in increasing the efficacy of rehabilitation devices. For the rehabilitation and help of a patient with a lower-limb condition, a sliding mode control (SMC) with proportional derivative (PD) control approach are used as parallel loops. Active disturbances rejection control (ADRC) is used by these controllers to cancel any external influences. To overcome the degradation of disturbance rejection and robustness caused by a failure to fully adjust for the entire disturbance, a (SMC) loop was introduced to the control regulation. By assessing performance indices related to the estimated inaccuracy, the results demonstrate the effectiveness of the suggested controller. Simulink is used for simulation and analysis.
Abstract
Nowadays, there is an increasing demand on environmentally friendly materials, so the environmentally conscious architecture and the use of environmentally friendly materials have also become preferred. It is becoming increasingly important to turn from artificial materials to products made from renewable raw materials. The straw quilt, which is considered to be a new, innovative product on the Hungarian construction market, can provide an alternative for this need. The aim of this research was to investigate the material properties and possible uses of straw quilt thermal insulation. Laboratory tests were performed before the product was placed on the market. The results have shown that it has several advantageous properties that can make it competitive in the market of thermal insulation materials.