Browse

You are looking at 31 - 40 of 2,613 items

Abstract

Natural rubber (NR) vulcanizates were prepared from natural rubber and chitin using a two-roll mill. The chitin was extracted from crab shell waste obtained from a local market in Oron, Akwa Ibom State, Nigeria using the chemical extraction method. The effects of the chitin at different contents (0–40 phr) on the mechanical properties of the NR/Chitin vulcanizates with carbon black as reference filler have been investigated. The tensile strength of the chitin filled natural rubber (NCH), and the carbon black filled natural rubber (NCB) vulcanizates were found to increase with an increase in filler content to reach optimum at 30 phr after which it decreased. The hardness, impact and abrasion resistance properties of the NCH and NCB vulcanizates increased as filler content increases. The tensile strength and abrasion resistance of the vulcanizates containing blends of varying percentages of carbon black to chitin (CBCH) increased as more carbon black (CB) is introduced while the hardness and impact strength increased with increase in chitin content. However, carbon black filled vulcanizates showed better property enhancement than the chitin filler.

Open access

Abstract

Natural rubber (NR) vulcanizates were prepared from natural rubber and chitin using a two-roll mill. The chitin was extracted from crab shell waste obtained from a local market in Oron, Akwa Ibom State, Nigeria using the chemical extraction method. The effects of the chitin at different contents (0–40 phr) on the mechanical properties of the NR/Chitin vulcanizates with carbon black as reference filler have been investigated. The tensile strength of the chitin filled natural rubber (NCH), and the carbon black filled natural rubber (NCB) vulcanizates were found to increase with an increase in filler content to reach optimum at 30 phr after which it decreased. The hardness, impact and abrasion resistance properties of the NCH and NCB vulcanizates increased as filler content increases. The tensile strength and abrasion resistance of the vulcanizates containing blends of varying percentages of carbon black to chitin (CBCH) increased as more carbon black (CB) is introduced while the hardness and impact strength increased with increase in chitin content. However, carbon black filled vulcanizates showed better property enhancement than the chitin filler.

Open access

Abstract

The Szentgyörgyi-Horváth-house is one of the major historical buildings of Balatonfüred. The design of the reconstruction was preceded by detailed architectural historical study. The reconstruction of the building was realized by retaining the original structures. For the new function the building was equipped with an air-conditioning engine-room. The air conditioner is a significant source of noise for the apartments facing the courtyard of the building, due to its continuous operation. The acoustic examination of the enclosed yard was calculated with two different approaches. The distance-dependent approximation, which is usual for large halls, was approved. Building construction structures were determined based on the results to meet the acoustic requirements.

Open access

Abstract

Lifts are indispensable for the evacuation of mobility-impaired people from buildings in case of emergency. It is necessary to quantify the movement parameters of these people and describe the entire process using a suitable algorithm. The aim of the research was to quantify the times and speeds of movement for a person using a wheelchair and for an injured person. An experiment in situ was used. During the experiment, arrivals at the lift, cabin entries, and exits were monitored. The results include the times and speeds of a mobility-impaired person's movement. The experiments showed that a person using a wheelchair was slower than an injured person. The results can be used to expand computational models to account for the possibility of using lifts for evacuation.

Full access

Abstract

This research will shed light on studying a terrazzo pavement in Prince Mohamed Ali Museum (the case study). The authors used visual inspection, stereo microscope, USB microscope, XRPD analysis, and SEM.EDX to identify its components, deterioration aspects and execution techniques. The XRPD and SEM.EDX results revealed that Portland cement was used in the three layers of terrazzo because of the detection of Hatrurite, Alite, Anorthite, Albite, Aragonite, etc. Many pigments were used in the topping terrazzo layer as; Goethite, Greenalite, Hematite, Azurite and Magnetite. The divider strips were made of brass alloy and the topping layer chips were prepared from basalt, marble and sea shells.

Full access

Abstract

Construction project management is difficult process and important part of efficiency and productivity in construction industry. Currently, construction industry is increasing demands on technology, environmental and social construction parameters in the context of maintaining the balance of economic efficiency and sustainability of the construction and realization of buildings. Progressive technology as knowledge systems and building information modeling are the supporting tool for achieving this. Building information modeling is a progressive intelligent 3D model-based process that gives architecture, engineering, and construction professionals the insight and tools to more efficiently in planning, designing and buildings and infrastructure managing. Knowledge and building information modeling technology include a lot of functions and opportunities for better and easier way to achieve project goal and affect to construction project management process. Research discusses the issue of construction project management trough building information modeling and knowledge technology. The main aim of the paper is to analyze impact of these technologies on efficiency in construction project management.

Full access

Abstract

The soil conservation service - curve number method is a globally used approach to simulations of surface runoff for its simplicity and applicability. Nevertheless, relevant simulations require proper setting of the model's components. This work focuses on optimization of initial abstraction ratio λ in the Husí potok sub-catchments in Czech Republic. Due to favorable morphology, the watershed is prone to flash floods and accurate modeling of surface runoff is of high interest. The analysis was conducted using pairs of discharge and rainfall measurements. The results outline that the traditional value λ= 0.2 is too high in this watershed and should be reduced.

Full access

Abstract

This paper studies the presence effects of two or more adjacent structures on the tunnel responses and vice versa due to surface and underground traffic loads. The study is numerically carried out by using Finite element Plaxis2D software©. The obtained results demonstrate that the dynamical interaction between the tunnel and the structures is significantly influenced by varying the number and distance between the adjacent structures, the depth of the tunnel and the location of the traffic load. These results can be considered and used in realistic and practical cases and also to help build efficient and more comfortable construction projects.

Full access

Abstract

The possibility of using mineral admixtures as a replacement for cement may reduce the carbon dioxide emission, which causes global warming and climatic changes on the environment. The objective of this study is to investigate the properties of early strength concrete produced with a constant replacement of alccofine (i.e. 25% by mass) and a new generation of chemical admixture that is Polycarboxylate ether. The constant dosage of alccofine and different proportions of polycarboxylate ethers are mixed in concrete and tested for workability and mechanical properties of concrete. Response surface method was applied to predict, validate and optimize the experimental data using regression equation. The results show that the performance of concrete improves with the addition of alccofine and Polycarboxylate ether into concrete.

Full access

Abstract

Railway ballast tamping is one of the cost-expensive renewal and maintenance works of railway superstructure. The quality of ballast consolidation influences its resistance to residual deformations and long-term deterioration of track geometry. The process of ballast compaction along the sleeper under the vibration loading is complex and depends on many factors. The ballast flow processes under the vibration loading can produce both consolidation and un-consolidation of ballast material. The present study is devoted to the experimental investigation of ballast consolidation inhomogeneity. The method of ballast local consolidation measurement is proposed. The method is based on the velocity of impact wave propagation that is measured with device. The application of modern microcontroller and sensor techniques provided simple and reliable multi-point velocity measurements in a ballast layer. That enables well enough spatial resolution of ballast consolidation inhomogeneity. The measurement analysis has shown more than 4 times higher consolidation under the sleeper center than for unconsolidated ballast.

Full access