Browse Our Biology and Life Sciences Journals
Biology is a study of living objects and their life processes. It examines all aspects of living organisms such as their occurrence, classification, internal and external structure, nutrition, reproduction, inheritance, etc. The term “biology” is commonly replaced by the terms “life sciences” and “biological sciences.” There are dozens of branches of biology. Some of the major ones include:
Biology and Life Sciences
Abstract
This study aimed to evaluate the effects of dry heat treatment (roasting) conditions on the physicochemical and sensory properties of crispy pork lard, contributing to the sustainable valorisation of pork by-products. Pork lards were roasted at various temperatures (150–200 °C) for durations of 90–180 min, using response surface methodology design to develop, improve, and optimise the process. The roasted pork lards were evaluated for moisture, lipid, colour, and sensory properties using standard methods. Effect of roasting conditions on properties were modelled and optimised. The roasting conditions significantly influenced the chemical, colour, and sensory properties of the final product. Roasting at 184 °C for 146 min was the optimal condition, achieving a desirability of 78.8%. This work demonstrates the utility of controlled roasting processes to sustainably fractionate underutilised pork by-products into food ingredients with commercial value.
Abstract
Nipah virus (NiV), a highly pathogenic zoonotic paramyxovirus, poses a significant public health threat due to its high mortality rate and potential for human-to-human transmission. The attachment (G) and fusion (F) glycoproteins play pivotal roles in viral entry and host-cell fusion, making them prime targets for therapeutic and vaccine development. Recent advances in structural biology have provided high-resolution insights into the molecular architecture and functional dynamics of these glycoproteins, revealing key epitopes and domains essential for neutralizing antibody responses. The G glycoprotein's head domain and the prefusion F ectodomain have emerged as focal points for vaccine design, with multivalent display strategies showing promise in enhancing immunogenicity and breadth of protection. Structural studies have also informed the development of monoclonal antibodies like m102.4, offering potential post-exposure therapies. Additionally, insights from cryo-electron microscopy and X-ray crystallography have facilitated the design of structure-based inhibitors and next-generation vaccines, including nanoparticle and multi-epitope formulations. This review highlights recent structural findings on the NiV G and F glycoproteins, their implications for therapeutic strategies, and the challenges in developing effective and targeted interventions. A deeper understanding of these glycoproteins will be crucial for advancing NiV-specific therapeutics and vaccines, ultimately enhancing global preparedness against future outbreaks.
Abstract
Besides its live-saving properties, antibiotic treatment affects the commensal microbiota facilitating colonization with potentially harmful microorganisms. Here we tested how commonly applied antibiotics induced gut microbiota changes and predisposed to intestinal carriage of multi-drug resistant Pseudomonas aeruginosa (MDR Psae) upon exposure. Therefore, mice received either vancomycin, ciprofloxacin, ampicillin plus sulbactam (A/S) or no antibiotics via the drinking water and were perorally challenged with a clinical MDR Psae isolate after antibiotic withdrawal. Whereas 100% of A/S and 55% of ciprofloxacin pretreated mice harbored Psae in their feces seven days post-challenge, intestinal Psae carriage rates were 20.0% and 26.3% in vancomycin pretreated and untreated mice, respectively. Microbiota analyses revealed that immediately before MDR Psae challenge, A/S pretreated mice displayed the lowest total bacterial, lactobacilli and Clostridium leptum fecal loads compared to other cohorts. Seven days following Psae exposure, however, higher numbers of apoptotic colonic epithelial cells were observed in A/S pretreated versus untreated mice that were accompanied by more enhanced innate and adaptive immune cell responses and nitric oxide secretion in colonic and ileal biopsies in the former versus the latter. In conclusion, distinct gut microbiota shifts following A/S pretreatment facilitate pronounced intestinal MDR Psae colonization and pro-inflammatory immune responses upon oral exposure.
The replacement of maize with grain sorghum is a promising practice for enhancing climate change adaptation strategies in the drought-prone areas of Central Europe. The refinement of the agrotechnics of commercial hybrids contributes to the development of sustainable agriculture. A field experiment was conducted between 24 May 2023 and 27 September 2023 in Keszthely (Hungary) in order to evaluate the effects of plant density (D1 = 240,000 plants ha–1, D2 = 280,000 plants ha–1) and equidistantly increasing N doses (0–40–80–120–160–200 kg N ha–1) on the grain yield, biomass weight and leaf area index (LAI) of 4 grain sorghum cultivars (G1 = KWS Nemesis, G2 = RTG Huggo, G3 = GK Erzsébet, G4 = ES Foehn). Another aim was to examine the effect of treatments on weed coverage. According to the results, plant density and N treatment had a general significant effect on grain yield (p < 0.05), biomass weight (p < 0.05) and LAI (p < 0.05; p = 0.015), regardless of the applied cultivar. Positive correlations were observed between biological and grain yield (D1: r = 0.9, p = 0.02; D2: r = 0.91, p = 0.01) as well as between LAI and grain yield (D1: r = 0.89, p = 0.6; D2: r = 0.91, p = 0.07). Significant differences were also observed between the grain yield (p < 0.05), biomass weight (p < 0.05) and LAI (p < 0.05) of the cultivars. In general, grain yields peaked around 120 kg N ha–1 at the plant density of 240,000 plants ha–1 and around 160 kg N ha–1 at the plant density of 280,000 plants ha–1. Among the experimental conditions RTG Huggo yielded the best results. In general, weed coverage was significantly lower (p = 0.002) in denser stands. The enhancing effect of N on weed coverage could not be detected (p = 0.318). In conclusion, a plant density of 280,000 plants ha–1, a N dose of 120–160 kg N ha–1 and RTG Huggo cultivar proved to be the best under the experimental conditions.
Abstract
Cocoa that is abundant in dark chocolate is known for its anti-inflammatory effects that are mainly due to biologically active ingredients like polyphenols and methylxanthines. We here provide a comprehensive literature survey of both, in vitro and in vivo studies including clinical trials summarizing recent evidence on the immune-modulatory effects exerted by application of cocoa-rich dark chocolate or distinct cocoa-derived molecules. The survey revealed that dark chocolate and its derivatives could effectively dampen pro-inflammatory including oxidative stress responses in vascular diseases including atherosclerosis, hypertension, and decompression sickness, metabolic morbidities such as obesity and type 2 diabetes mellitus, celiac disease, chronic kidney diseases, and polycystic ovary syndrome, enhance gut epithelial barrier function, and modulate pain sensations. On the other hand, dark chocolate consumption intake was found to worsen acne symptoms. In conclusion, dietary supplementation with dark chocolate with high contents of biologically active polyphenols and methylxanthines might be promising adjunct immune-modulatory treatment options of distinct acute as well as chronic inflammatory morbidities that need to be evaluated in more detail in future in vivo including clinical studies.
Abstract
Allostatic load (AL) is a comprehensive physiologic measure of the body's chronic stress response and is associated with physical and mental health risks. The function of DASH diet (Dietary Approaches to Stop Hypertension) model in the development of AL is unclear. The relationship between the DASH score and AL was examined in this study. 1,565 US adults from NHANES database 2017–2020 were selected for the study, and DASH dietary pattern was assessed using DASH score, and ≥4.5 indicated compliance with DASH diet. AL was calculated using 11 biomarkers, and a score >3 indicated high levels. The relationship between DASH score and AL was analysed using logistic regression. In this study, a high AL prevalence of 35.4% (n = 555) was found. In the unadjusted model, a high DASH score was associated with a low level of AL [OR = 0.458, 95% CI (0.306, 0.687), P < 0.001], and this relationship persisted in the adjusted model [OR = 0.473, 95% CI (0.310, 0.720), P < 0.001]. DASH score are negatively associated with AL, and low DASH score increase the risk of high AL, which can adversely affect physical and mental health.
Abstract
Antibiotic resistance is a major problem in the healthcare industry, and it presents difficulties in managing bacterial diseases worldwide. The need to find alternative antibiotic-containing methods is thus a major area for the scientific community to work on. Bacteriophage therapy is an interesting alternative that has been used in scientific research for a long time to tackle antibiotic-resistant bacteria. The purpose of this review was to compile the latest data on bacteriophages, which are progressively being used as alternatives to antibiotics, and to identify the mechanisms associated with phage therapy. The results section delves into the growing challenges posed by antibiotics and explores the potential of bacteriophages as therapeutic alternatives. This study discusses how phages can decrease antibiotic resistance, highlighting their role in modulating microbiomes and addressing various complications. This study explored the intriguing question of whether bacteriophages can combat nonbacterial diseases and examined their indirect use in pest control. In addition, this study explores the application of the CRISPR-Cas system in combating antibiotic resistance and specifically addresses phage therapy for secondary bacterial infections in COVID-19. We will further discuss whether bacteriophages are a noteworthy alternative to antibiotics by considering the evolutionary trade-offs between phages and antibiotic resistance. This section concludes by outlining future perspectives and acknowledging limitations, particularly in the context of phage and CRISPR-Cas9-mediated phage therapy. The methodology adopted for this study is a comprehensive research strategy using the Google Scholar and PubMed databases, among others. In conclusion, phage therapy is a promising strategy for tackling antibiotic-resistant bacteria, contributing to improved food production and mitigating secondary health effects. However, effective regulation requires careful selection of phages in conjunction with antibiotics to ensure judicious control of the coevolutionary dynamics between phages and antibiotics.
Abstract
B-cells serve as a niche for Salmonella to establish a chronic infection, enabling bacteria to evade immune responses. One mechanism Salmonella uses to survive inside B-cells involves inhibiting the NLRC4 inflammasome activation, thereby preventing pyroptotic cell death. This study investigates whether Salmonella-infected B-cells can mount bactericidal responses to control intracellular bacteria. Our results show that Salmonella-infected B-cells can produce and release TNFα, IL-6, and IL-10, but not RANTES. Furthermore, priming B-cells with TNFα, IL-1β, or IFNγ enhances their bactericidal activity by promoting the production of reactive oxygen and nitrogen production species, reducing intracellular load. These results suggest that B-cells can clear Salmonella infection within a pro-inflammatory environment. However, the concurrent production of IL-10 may counteract the effects of pro-inflammatory cytokines, potentially modulating the immune response in the microenvironment.
Abstract
Multi-drug resistant bacterial infections are of global concern, leading to staggering health care costs and loss of lives. Hence, novel therapeutic options are highly required. Garcinia mangostana, a plant known as mangosteen (also termed “queen of the fruits”), is said to possess a multitude of favorable features like anti-microbial capacity. Accordingly, we compiled a literature review addressing the potential of the mangosteen and its compounds for the treatment of bacterial infections. The included 23 publications consistently reported the inhibition or elimination of bacteria following the administration of mangosteen extracts and compounds such as the xanthone α-mangostin, both in vitro and in vivo. Even pathogens like methicillin-resistant Staphylococcus aureus as well as vancomycin-resistant Enterococcus species were tackled. While the effect of mangosteen extracts and compounds appeared to be dose-dependent, they exhibited also anti-biofilm activity and strong stability under varying conditions, suggesting suitability for a versatile approach to combat infectious diseases. Moreover, the combination of α-mangostin with other phytotherapeutic agents and especially antibiotics revealed enhanced anti-bacterial results, at low or no toxicity. In light of this review, we conclude that mangosteen extracts and compounds are promising candidates for the anti-bacterial therapy of human infections, warranting further consideration in clinical trials.