Browse

You are looking at 131 - 140 of 5,576 items

Abstract

Environmental changes have been rapidly increasing in the last decades, causing unprecedented shifts in biodiversity. The impacts of biodiversity changes on ecosystem processes depend on the traits of affected species and their functional redundancy at the community level. The generated data on biodiversity-functioning in marine environments are still fragmentary and predictions on how species, communities and ecosystems will respond to the ongoing global changes are still uncertain. This selection of manuscripts presents the efforts of researchers around the world towards a better understanding on the mechanisms driving biodiversity and functioning patterns in marine ecosystems. The issue is composed of studies about first records of diversity and single species patterns in overlooked marine communities, effects of pollution in shaping species composition, foundation species and the impact of their loss on local communities, and the relevance of ecological interactions and species’ traits in structuring marine food webs. We conclude that more field and experimental studies combined to modelling are needed for understanding mechanisms that currently determine the structure and functioning of ecosystems and for improving predictions under global change scenarios.

Restricted access
Authors: H. Essekhyr, K. Khalil, Z. Damsiri, G. Derhy and K. Elkalay

Abstract

The Moroccan Atlantic coast is considered as one of the richest fishing areas in the world, having rich biodiversity, and supporting the fisheries sector. However, studies have shown that the ecosystem presently suffers from overexploitation of fishery resources and environmental degradation. To quantify these impacts, the characterization of the ecosystem is essential. In this work, an Ecopath model (EwE), which assumes steady-state and mass-balanced conditions for the Moroccan Atlantic coast ecosystem, was developed and balanced. Network analysis included in the Ecopath software package was used to estimate trophic interactions and the maturity of the ecosystem. The model consisted of 29 functional groups. The results showed a Total System Throughput (TST) which is comprised mainly of flows into detritus, followed by export, consumption, and respiration. Systemic indicators, suggest that the Moroccan Atlantic coast is an immature and developing ecosystem. Further observations on the functioning and dynamics of the ecosystem are discussed.

Restricted access
Authors: Ralf Ignatius, Christiane Berg, Chris Weiland, Angela Darmer, Thilo Wenzel, Marion Lorenz, Jörg Fuhrmann and Michael Müller

Stool antigen tests are recommended for the diagnosis of Helicobacter pylori infection. Here, we compared two novel assays, i.e., one enzyme immunoassay (EIA) and one immunochromatography assay (ICA), with a chemiluminescence immunoassay (CLIA) that had previously been compared with rapid urease test, histology, and urea breath test. Two hundred sixty-six frozen stool samples with defined CLIA results (42 positives, 219 negatives, and 5 samples with borderline results) collected between January and May 2018 were thawed and immediately tested by EIA, ICA, and CLIA.

In 248 samples with repeatedly positive/negative CLIA results, EIA and ICA were positive for 40 and 37 of 41 CLIA-positive samples and yielded negative results for 206 and 201 of 207 CLIA-negative samples, respectively. There was a high positive percent agreement (EIA, 97.6%; 95% confidence interval (95% CI), 86.3–100%; ICA, 90.2%; 95% CI, 76.9–96.7%), as well as a negative percent agreement between the assays (EIA, 99.5%; 95% CI, 97.0–100%; ICA, 97.1%; 95% CI, 93.7–98.8%). This was further supported by kappa values indicating very good agreement (CLIA vs. EIA, 0.971; CLIA vs. ICA, 0.857). In conclusion, both EIA and ICA comprise valuable assays for the detection of H. pylori antigen in stool samples.

Open access

Campylobacter jejuni and Campylobacter coli are among the leading causes of gastroenteritis in humans worldwide, particularly in Africa. Poultry remains a major source of Campylobacter species and a vector of transmission to humans.

This pilot study was aimed at isolating and determining the antibiotic susceptibility profiles of Campylobacter spp. from fresh poultry droppings collected from poultry farms in Lagos State, Nigeria. Susceptibility was assessed using the CLSI standards.

Standard microbiological methods were used in isolation, identification, and characterization of Campylobacter spp. Isolates were subjected to antibiotic susceptibility testing by the disk diffusion method.

Of the 150 poultry droppings analyzed, 8 (5.3%) harbored Campylobacter spp. All isolates proved to be C. coli since they were all negative for the hip gene. A percentage of 100% showed resistance to nalidixic acid, chloramphenicol, cloxacillin, and streptomycin. While 87.5% were susceptible to amoxicillin and amoxicillin/clavulanic acid, 62.5% were susceptible to tetracycline. Surprisingly, 62.5% of C. coli had decreased (intermediate) susceptibility to erythromycin.

Although there was a low prevalence of C. coli from poultry in this study, the presence of antibiotic resistant strains circulating the food chain could result in treatment failures and difficulty in case management if involved in infections of humans.

Open access
Authors: Abdelaziz Ed-Dra, Fouzia Rhazi Filali, Slimane Khayi, Said Oulghazi, Brahim Bouchrif, Abdellah El Allaoui, Bouchra Ouhmidou and Mohieddine Moumni

Salmonella is a major cause of morbidity and mortality in humans worldwide, and the infection with multidrug-resistant strains can cause severe diseases. This study was designed to evaluate the antimicrobial resistance, to detect the virulence genes, and to study the genetic diversity of isolated Salmonella strains using 16S rRNA sequences. For this, 34 Salmonella strains isolated from sausages were identified using biochemical and serological methods. Molecular tools were used to evaluate the presence of virulence genes (orgA, sitC, sipB, spiA, iroN, and sifA) using simplex and multiplex polymerase chain reaction (PCR) and to sequence 16S rRNA genes for phylogenetic analysis. The susceptibility to 24 selected antibiotics was also studied. The results of this study showed that all isolated Salmonella were positive for targeted virulence genes and were resistant to at least one antibiotic. However, the multidrug resistance was observed in 44% of isolated strains. The phylogenetic analysis of 16S rRNA sequences highlighted that Salmonella isolates were divided into 3 clusters and 3 sub-clusters, with a ≥98% similarity to Salmonella enterica species. From this study, we conclude that sausages are considered as a potential source of Salmonella, which could be a major risk to public health.

Open access

Sorghum bicolor (L.) Moench contains various phenolic compounds such as anthocyanin. Eleven sorghum accessions were classified into five groups by grain colour and their antioxidant activities were measured as well as the contents of total phenolic compounds (TPC) and anthocyanins in sorghum grains. The grain colour was related to TPC content, but not to monomelic anthocyanin content. Moreover, the overall patterns of antioxidant activity levels in 2,2-Diphenyl-1-picrylhydrazyl (DPPH) or 2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay were similar to those of the TPC content. Correlations between TPC and anthocyanin contents were statistically significant and positive (P < 0.05). TPC content showed also a strong positive correlation to DPPH and ABTS antioxidant activities. The results provide the basic data for breeding of sorghum varieties containing large amounts of antioxidants.

Restricted access

Fusarium head blight (FHB) is an important disease of wheat causing significant yield and quality losses globally. Breeding for host plant resistance is an economic approach to FHB control and management. The aim of this study was to identify potential sources of resistance from newly developed recombinant inbred lines (RILs) of wheat. A total of 778 RILs were developed through a bi-parental mating design followed by continuous selfing and selection. The RILs along with their eight parental lines (Baviaans, Buffels, Duzi, #910, #936, #937, #942 and #1036) and FHB resistant check cultivar ‘Sumai 3’ and susceptible check ‘SST 806’ were field evaluated across four environments in South Africa. Fusarium graminearum isolates were artificially inoculated to initiate infection and disease development. The percentage of wheat spikes showing FHB symptoms were scored. The research identified six percent of the RILs with disease resistance. Heritability for FHB resistance was the highest (64%) indicating the possibility of achieving higher selection gains for FHB resistance across the selected environments. The following five RILs were identified as potential sources of resistance: 681 (Buffels/1036-71), 134 (Duzi/910-8), 22 (Baviaans/910-22), 717 (Baviaans/937-8) and 133 (Duzi/910-7) with mean FHB scores of 6.8%, 7.8%, 9.5%, 9.8% and 10%, respectively. The selected lines expressed comparatively similar levels of resistance compared with that of Sumai 3. The identified RILs are useful genetic resources for resistance breeding against FHB disease of wheat. Since the presence of the F. graminearum is associated with deoxynivalenol (DON) accumulation, the DON levels amongst the selected lines should be determined to ensure the release of improved wheat cultivars with reduced levels of DON accumulation.

Restricted access

The biology of Sesamia inferens (Walker) was studied at 25±1 °C and 70±5 per cent relative humidity on PMH 1 maize hybrid. The incubation period was 6.82±0.05 days. There were six larval instars and the larval development was completed in 29.95±0.16 days. The duration of instars I-VI was 4.17±0.09, 3.60±0.08, 4.47±0.02, 4.40±0.03, 6.18±0.06 and 7.13±0.05 days, respectively. The pre-pupal period was 2.83±0.02 days. The male and female pupa had duration of 8.05±0.12 days and 10.33±0.16 days, respectively. The adult emergence was 93.02±0.01 per cent, with a sex ratio of 1:1.05. The males had shorter longevity of 3.92±0.23 days, while females had 5.05±0.28 days. The pre-oviposition, oviposition and post-oviposition period was 1.11±0.10, 2.96±0.19 and 0.79±0.10 days, respectively. The fecundity was 211.92 ±11.92 eggs with 53.69±10.78 eggs per cluster. The egg hatchability was 92.19±0.01 per cent. The total life cycle was completed in 47.65±0.24 days (Male) and 49.93±0.21 days (female). The observations on the biology will help in developing efficient strategies to manage S. inferens on maize in the north western plains of India.

Restricted access
Authors: E. Sapi, K. Gupta, K. Wawrzeniak, G. Gaur, J. Torres, K. Filush, A. Melillo and B. Zelger

Our research group has recently shown that Borrelia burgdorferi, the Lyme disease bacterium, is capable of forming biofilms in Borrelia-infected human skin lesions called Borrelia lymphocytoma (BL). Biofilm structures often contain multiple organisms in a symbiotic relationship, with the goal of providing shelter from environmental stressors such as antimicrobial agents. Because multiple co-infections are common in Lyme disease, the main questions of this study were whether BL tissues contained other pathogenic species and/or whether there is any co-existence with Borrelia biofilms. Recent reports suggested Chlamydia-like organisms in ticks and Borrelia-infected human skin tissues; therefore, Chlamydia-specific polymerase chain reaction (PCR) analyses were performed in Borrelia-positive BL tissues. Analyses of the sequence of the positive PCR bands revealed that Chlamydia spp. DNAs are indeed present in these tissues, and their sequences have the best identity match to Chlamydophila pneumoniae and Chlamydia trachomatis. Fluorescent immunohistochemical and in situ hybridization methods demonstrated the presence of Chlamydia antigen and DNA in 84% of Borrelia biofilms. Confocal microscopy revealed that Chlamydia locates in the center of Borrelia biofilms, and together, they form a well-organized mixed pathogenic structure. In summary, our study is the first to show BorreliaChlamydia mixed biofilms in infected human skin tissues, which raises the questions of whether these human pathogens have developed a symbiotic relationship for their mutual survival.

Open access

The seed-borne (Pyrenophora graminea; Pg) and foliar (Blumeria graminis; Bg) are two economically important fungal pathogens of barley worldwide. Barley plant resistance genes, as the pathogenesis related proteins play an important role in defense mechanisms. This study aimed to monitor the expression of PR2 and PAL pathogenesis related genes during compatible/incompatible barley interaction with Pg and Bg at different time points of disease development using the Quantitative Real-time PCR technique (qRT-PCR).

Comparison of data showed that PR2 and PAL were significantly over expressed in infected resistant and susceptible plants as against their lower expression in controls,. Upregulation of these defense-related genes during Pg and Bg infections was companied with a slow development of disease symptoms at the time course in the resistant genotype. qRT-PCR analysis revealed higher gene expression in resistant barley plants inoculated with Pg as compared with Bg, with a maximum expression for PR2 (13.8 and 5.06-fold) and PAL (14.8 and 4.51-fold) respectively, at the latest stage of each disease development. It was also noteworthy that PR2 and PAL genes, had higher constitutive expression and faster induction for the both pathogens in the resistant genotype as compared with the susceptible one.

Obtained results suggest that both genes, PR2 and PAL, positively regulate Pg- and Bg-resistance in barley plants during disease progress. These expression patterns can provide useful insights to better understanding of the barley–fungus interactions with different fungal lifestyles.

Restricted access