Browse Our Chemical Engineering Journals

Chemical engineering is an engineering branch that deals with the chemical production and manufacture of products that undergo chemical processes. This includes equipment design, creating systems and processes to refine raw material, as well as mixing, compounding, and processing chemicals to create products.

Chemistry and Chemical Engineering

You are looking at 501 - 550 of 33,905 items for

  • Refine by Access: All Content x
Clear All

Transfer of seven thin-layer chromatography (TLC) Global Pharma Health Fund E.V. Minilab protocols for screening counterfeit pharmaceutical products in the field to quantitative high-performance TLC (HPTLC)–densitometry methods was performed using a model process published previously. The developed and validated methods for tablets containing amlodipine besylate, cefpodoxime proxetil, cetirizine 2HCl, diclofenac sodium, efavirenz, mefenamic acid, and atovaquone + proguanil HCl involved the use of only relatively inexpensive and nontoxic solvents, Merck KGaA Premium Purity HPTLC silica gel 60 F254 plates, semi-automated sample and standard solution application with a CAMAG Linomat 4, and automated densitometry with a CAMAG Scanner 3 for detection, identification, and quantification. In addition, previously transferred HPTLC–densitometry methods for azithromycin and for cephalexin were used to analyze a new product of each drug to demonstrate the applicability of the methods.

Open access

Abstract

The study aims to evaluate two-stage anaerobic co-digestion of leachate and starch waste using anaerobic biofilm bioreactor to enhance methane production. The anaerobic digestion process was operated under the mesophilic condition at 35 ± 1 °C. Hydraulic retention time (HRT) applied to the acidogenesis and methanogenesis reactors were 5 and 25 days, respectively. The organic loading rate (OLR) used in the process of acidogenesis was 2.91 gram volatile solid /L.day, while methanogenesis was 0.58 gram volatile solid (VS) per liter per day. Results showed that two-stage process using biofilm was an effective method for operating anaerobic co-digestion of starch waste and landfill leachate in which the system produced higher methane yield at 125.11 mL methane (CH4) per gram volatile solid (VS) added (mL.CH4/g.VS.added) in comparison to the single-stage process (20.57 mL CH4/g.VS.added) and two-stage process (77.60 mL CH4/g.VS.added) without using biofilm. Two-stage process using biofilm also effectively reduced organic matters in the culture in which the system reached 61% BOD removal in comparison to the single-stage process and two-stage process without biofilm that only had 27.6 and 39.3% BOD removal, respectively. This study suggested that the two-stage process using biofilm would be the preferred technique for treating starch waste and landfill leachate.

Restricted access

Summary

The merits of chemometrics in categorizing different Egyptian olive chemovarieties based on their compositional integrity were implemented in this study. Fingerprints of 9 different olive leaves varieties cultivated in Egypt were established using reversed-phase high-performance thin-layer chromatography (RP-HPTLC) prior to and after post-chromatographic derivatization with natural product-polyethylene glycol (NP/PEG) reagent and image analysis using ImageJ® software in order to build 2 separate data matrices. The chromatographic fingerprints were separately subjected to unsupervised pattern recognition multivariate analysis to build 2 separate models using principal component analysis (PCA) and hierarchical clustering analysis (HCA) algorithms to explore the distribution pattern of different chemovarieties. The second model which involved olive samples’ fingerprints after post-chromatographic derivatization exhibited greater ability to reveal a broader spectrum of phytoconstituents with enhanced sensitivity. Densitometric RP-HPTLC quantification of oleuropein marker was compared to image analysis approach using Sorbfil TLC Videodensitometer® by newly developed and validated methods. Densitometry exhibited better performance characteristics than image analysis method and therefore was executed for determination of oleuropein concentration in the 9 Egyptian olive varieties. Oleuropein marker solely was found to be inadequate for standardization of olive leaves varieties. This study demonstrated a comprehensive approach for the rapid classification of different Egyptian olive varieties, which is crucial to warranting their chemical-consistency and, thereafter, effective consistency.

Restricted access

Abstract

Water availability is one of the major physiological factors influencing plant growth and development. An assessment study has been done at the Szent István University, Gödöllő to evaluate and identify the water footprint of protein yield of field crop species. Twelve field crop species (Sugar beet Beta vulgaris, spring and winter barley Hordeum vulgare, winter wheat Triticum aestivum, maize Zea mays, sunflower Helianthus annuus, peas Pisum sativum, potato Solanum tuberosum, alfalfa Medicago sativa, oilseed rape Brassica napus, rye Secale cereale and oats Avena sativa) were involved in the study. Evapotranspiration patterns of the crops studied have been identified by the regular agroclimatology methodology and physiologically reliable protein ranges within crop yields were evaluated.

The results obtained suggest, that water footprint of cereals proved to be the lowest, however maize values were highly affected by the high variability of protein yield. Oilseed crops had considerably high protein yield with medium water efficiency. Alfalfa, potato and sugar beet water footprints were in accordance with their evapotranspiration patterns.

Protein based water footprint assessment seems to be more applicable in crop species evaluations than that of yield based methodologies.

Open access

This paper describes a rapid method to simultaneously determine acetochlor, fluorochloridone and pendimethalin present in a herbicide emulsifiable concentrate (EC) formulation using gas chromatography–mass spectrometry (GC–MS). Selected ion monitoring mode was performed to increase the sensitivity, with dibutyl phthalate as an internal standard. The method was validated with respect to linearity, accuracy, precision, and stability. Chromatographic separation was carried out on a TG-5 MS column (30 m × 0.25 mm × 0.25 μm) with helium as the carrier gas at a flow rate of 1.0 mL/min. Calibration curves were linear over 2.0–20.0 μg/mL for each analyte, and the limit of quantification was below 20 ng/mL. Good performance in terms of recovery ranging from 94.5% to 102.5% at 3 concentration levels proved excellent accuracy. The intra- and inter-day relative standard deviations for 6 replicate measurements were always less than 5%. The developed method is simple and efficient for the routine determination of the ternary mixtures in a compound herbicide EC formulation product.

Open access

Psoralidin has a variety of pharmacological activities, such as anti-tumor, anti-depressant, and anti-inflammatory activities. This study aims at developing a rapid ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method to determine psoralidin in rat plasma and studying the pharmacokinetic characteristic of psoralidin after intragastric administration of 20 and 40 mg/kg. Alpinetin was used as an internal standard (IS), and the plasma samples were precipitated with acetonitrile. The calibration curves were linear over the range of 0.2–250 ng/mL (R 2 = 0.993). The pharmacokinetic parameters were calculated by DAS 3.0. Half-life (t 1/2) was 7.2 ± 0.97 h and 7.1 ± 0.27 h for different dosages, respectively. T max was 4.2 ± 1.1 h and 4.0 ± 1.1 h for different dosages, respectively. Apparent volume of distribution (V d) for different dosages was 630.1 ± 168.8 and 600.1 ± 138.8 L/kg, respectively. Clearance (CL) was 105.6 ± 29.2 and 100.6 ± 22.2 L/h/kg for different dosages, indicating that psoralidin was mainly distributed in rat tissues. The pharmacokinetic study provided important information for further clinical application in the treatment of cancer and osteoporosis.

Open access

A sensitive, inexpensive high-performance liquid chromatography–ultraviolet detection (HPLC–UV) method has been developed and validated for the simultaneous monitoring of pantoprazole sodium sesquihydrate (PSS) and domperidone maleate (DM) in rabbit plasma on a C18 column with UV detection at 285 nm. Box–Behnken design was used with 3 independent variables, namely, flow rate (X 1), mobile phase composition (X 2), and phosphate buffer pH (X 3), which were used to design mathematical models. Response surface design was applied to optimize the dependent variables, i.e., retention time (Y 1 and Y 2) and percentage recoveries (Y 3 and Y 4) of PSS and DM. The method was sensitive and reproducible over 1.562 to 25 μg/mL. The effect of the quadratic outcome of flow rate, mobile phase composition, and buffer pH on retention time (p ˂ 0.001) and percentage recoveries of PSS and DM (p = 0.0016) were significant. The regression values obtained from analytical curve of PSS and DM were 0.999 and 0.9994, respectively. The percentage recoveries of PSS and DM were ranged from 94.5 to 100.41% and 94.77 to 100.31%, respectively. The developed method was applied for studying the pharmacokinetics of PSS and DM. The C max of test and reference formulations were 48.06 ± 0.347 μg/mL and 46.31 ± 0.398 μg/mL for PSS, and 15.11 ± 1.608 μg/mL and 12.06 ± 1.234 μg/mL for DM, respectively.

Open access

A convenient method was developed for simultaneous determination of 11 preservatives in cosmetics and pharmaceuticals. Matrix solid-phase dispersion had been optimized as the sample pretreatment technology, using Florisil as a dispersant, anhydrous sodium sulfate as a dehydrant, formic acid as an additive, and n-hexane and ethyl acetate as eluents successively, and followed by gas chromatography–flame ionization detection on a TR-5 capillary column. Experimental results showed that 11 preservatives were baseline separated within 22 min. Good linearities were observed in the concentration range of 0.53–250 μg/mL for all analytes, and there were also minor differences. All correlation coefficients (r) were more than 0.995. The average recoveries at 3 levels of spiked samples ranged from 80% to 124% with 0.9–12% intra-day RSD and 1.8–12% inter-day RSD. The limits of detection were less than 0.18 μg/mL for all analytes. Besides, there was no obvious matrix effect on the analytes. The conclusion was that the developed method was simple, cheap, accurate, precise, and environment-friendly, in addition to existing little matrix effects. It could be recommended to determine 11 preservatives individually or in any their combinations to not only in liquid and gel cosmetics but also in liquid medicine and ointment.

Open access
Acta Chromatographica
Authors:
Quan Zhou
,
Zhiguang Zhang
,
Peiwu Geng
,
Bingge Huang
,
Xianqin Wang
, and
Xiaomin Yu

An ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and validated for quantification of ligustroflavone, which was then applied in pharmacokinetics study in rat and tissue distribution in mouse. Twelve male Sprague Dawley rats were used for pharmacokinetics after intravenous (2 or 8 mg/kg) administration of ligustroflavone, six rats for each dose. Twenty-five mice were randomly divided into 5 groups (5 mice for each group, 1 group for each time point) and received 16 mg/kg ligustroflavone via intraperitoneal administration. The linear range of the calibration curve was over 2–2000 ng/mL for ligustroflavone in rat plasma and mouse tissues. The intra-day and inter-day precision expressed in % RSD were less than 14%, and the accuracy was between 88.5% and 108.4%.

The tissue distribution results indicated that ligustroflavone diffuses rapidly and widely into major organs. The level of ligustroflavone was highest in the mouse liver, followed by the kidney, spleen, and lung. The overwhelming accumulation in the liver indicated that the liver was responsible for the extensive metabolism.

Open access

In this work, a novel, simple, and quick capillary zone electrophoresis (CZE) method was proposed for simultaneous analysis of benazepril (BEN) with other co-administrated antihypertensive drugs, amlodipine besylate (AML) and hydrochlorothiazide (HCT), using a diode array detector (DAD). A fused silica capillary (78.5 cm total length, 70 cm effective length, and 75 μm id) was used in separation using a 40 mM phosphate buffer pH 7.5 as a running background electrolyte (BGE) under a positive potential of 30 KV, at a stable temperature of 25 °C for capillary during separation. Hydrodynamic injections were performed for 12 s at 50 mbar, and detection was performed at 210 nm for AML and BEN, at 225 nm for HCT, and at 232 nm for xipamide (XIP) added as an internal standard (IS). Separation of the three analyzed drugs and the IS was performed in less than 8 min. Migration times were 4.06, 5.23, 6.69, and 7.3 min for AML, HCT, BEN, and XIP, respectively. The findings proved that the proposed method was linear in the range of 10–80 μg/mL for all drugs with correlation coefficients >0.9994. The limit of detection (LOD) values of AML, HCT, and BEN were 1.004, 1.224, and 0.896 μg/mL, respectively, whereas the limit of quantification (LOQ) values were 3.124, 3.727, and 2.749 μg/mL for the cited drugs, respectively. Peak identity and purity were confirmed by DAD. The developed CZE method was applied for the analysis of the three antihypertensive drugs successfully in their combined pharmaceutical tablets, and it can be used for the quality control of single-pill combination (SPC) samples of these drugs in short time.

Open access

The US Food and Drug Administration (FDA) has affirmed the use of letrozole (LTZ) combined with palbociclib (PLB) to treat breast malignant tumor growth in postmenopausal women. A straightforward and extremely sensitive reversed-phase high-performance liquid chromatography method with photodiode array detection (RP-HPLC–PDA) was created and validated for the simultaneous determination of LTZ and PLB in rat plasma. The parameters used to give the best separation were a C18 column (150 mm × 4.6 mm, 3.5 μm) as the stationary phase with an isocratic mobile phase composed of methanol–30 mM ammonium acetate at a ratio of 60:40 (v/v), pH = 5.5, a flow rate of 0.8 mL/min, and detection wavelengths of 240 and 220 nm for LTZ and PLB, respectively. The developed method was assessed by the FDA rules over a range of 10–600 ng/mL for LTZ and PLB. The mean of %recovery of LTZ and PLB extracted from rat plasma by acetonitrile-based deproteinization was 91.06 ± 2.73 and 90.30 ± 1.95%, respectively, and the limits of detection were 5 ng/mL for LTZ and 7 ng/mL for PLB in rat plasma. The mean values of T max and C max were 6 ± 0.00 h and 266.96 ± 21.23 ng/mL for LTZ and 4 ± 0.00 h and 508.75 ± 61.56 ng/mL for PBL, respectively, after intraperitoneal administration of both drugs to rats. The developed HPLC–PDA method was demonstrated to be robust and was effectively applied to study the pharmacokinetics of LTZ and PLB in rat plasma.

Open access
Acta Chromatographica
Authors:
Yongxi Jin
,
Yuyan Chen
,
Jiawen Liu
,
Xi Bao
,
Yinghao Zhi
,
Congcong Wen
, and
Wenzong Zhu

An ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was established to determine ebeiedinone in mouse blood, and the pharmacokinetics of ebeiedinone after intravenous (0.5 mg/kg) and oral (2, 4, and 8 mg/kg) administration was studied. Twenty-four mice were randomly divided into 4 groups, 1 group was for intravenous administration (0.5 mg/kg), and other 3 groups were for oral administration (2, 4, and 8 mg/kg), with 6 rats in each group. Yubeinine was used as an internal standard. Multiple reaction monitoring (MRM) mode was used to quantitatively analyzed ebeiedinone m/z 414.4 → 91.1 and the internal standard m/z 430.4 → 412.3 in the electrospray ionization (ESI) positive interface. In the concentration range of 1–2000 ng/mL, the ebeiedinone in the mouse blood was linear (r 2 > 0.995), and the lower limit of quantification was 1.0 ng/mL. In the mouse blood, the intra-day precision coefficient of variation (CV) was less than 15%, and the inter-day precision CV was less than 15%. The accuracy ranged from 85.4% to 114.6%, and the average recovery was higher than 61.3%. The matrix effect was between 87.0% and 106.5%. These data met the pharmacokinetic study requirements of ebeiedinone. The UPLC–MS/MS method was sensitive, rapid, and selective and was successfully applied to the pharmacokinetic study of ebeiedinone in mice. The absolute bioavailability of ebeiedinone was 30.6%.

Open access
Acta Chromatographica
Authors:
Samiuela Lee
,
Christa E. Nath
,
Ben W. R. Balzer
,
Craig R. Lewis
,
Toby N. Trahair
,
Antoinette C. Anazodo
, and
Peter J. Shaw

Alectinib is a central nervous system-active small molecule anaplastic lymphoma kinase (ALK) inhibitor that is effective in the treatment of patients with ALK positive tumors, including advanced non-small cell lung cancers and lymphomas. A simple, isocratic high-performance liquid chromatography–photo diode array detection (HPLC–PDA) assay for measurement of alectinib in human plasma is described. Alectinib is extracted from the plasma matrix by addition of methanol, followed by centrifugation and acidification with 0.1% formic acid. It elutes with a run time of 4.6 min using a 250 mm × 4.6 mm RP-C18 column with 0.1% aqueous formic acid and methanol (35:65, v/v) and a flow rate of 1 mL/min. Detection was at 339 nm. Linear calibration plots were achieved in the range of 0.1–20 μg/mL for alectinib (r 2 = 0.9996). With limits of detection and quantification of 0.05 and 0.1 μg/mL, respectively, and excellent precision (%CV < 10%), accuracy (bias < ±12%), and recovery (>97%) within the 1–20 μg/mL concentration range, this assay was suitable for measuring pre-dose alectinib concentrations in an adolescent receiving 600-mg doses twice daily.

Open access

Summary

Schizonepeta annua (Pall.) Schischk. is an endemic annual plant from the Lamiaceae family and it has been employed to cure tracheitis in traditional herbal medicine. Its essential oil exhibited a strong antimicrobial and antioxidative effect. Next, high-performance thin-layer chromatography-bioautography was applied for investigation of the bioactive compounds of S. annua, and gas chromatography-quadrupole time-of-flight mass spectrometry was used to perform subsequent targeted identification of compounds. Three active components were characterized, and two of them were tentatively identified as thymol and carvacrol. S. annua has the potential to be a good alternative for synthetic disinfectants and antioxidants.

Restricted access

Summary

The presented study describes the development, optimization, and validation of a method for the determination of four structurally different anthelmintics (benzimidazole, diphenyl sulfide, imidazothiazole, hexahydropyrazine, and tetrahydropyrimidine) in water samples. The studied compounds were albendazole, febantel, levamisole, praziquantel, and pyrantel pamoate. The method involves solid-phase extraction and preconcentration of the anthelmintics, separation by thin-layer chromatography (TLC), and quantification by videodensitometry. TLC and preparative TLC separation was performed on silica gel 60 F254 plates with chloroform-methanol-formic acid as the mobile phase. Spots were detected and quantified at λ = 254 nm by videodensitometry. The method provides a linear response over a concentration range of 200–1500 µg L 1, depending on the anthelmintic with a correlation coefficient of 0.9888 in most cases, except for albendazole (0.9634) and pamoic acid (0.9654) as a secondary component of pyrantel pamoate. Also, the method has revealed limits of detection (100–300 µg L 1), good precision (intra- and inter-day) with a relative standard deviation below 13%, and recoveries above 95% for all investigated pharmaceuticals. The developed method has been successfully applied to the analysis of anthelmintics in production wastewater samples obtained from the local pharmaceutical industry. In order to determine the structures of two compounds detected by TLC of pyrantel pamoate, the spots were separated by preparative TLC, and the structures of the isolated samples were analyzed using 1H and 13C nuclear magnetic resonance (NMR) spectroscopy.

Restricted access

Summary

Background: The fruits of Benincasa hispida (Thunb.) Cogniaux, a ‘rasayana’ in ‘Ayurveda’, are enriched with several secondary metabolites, and rutin is one of them. Fruits are used for their anabolic, brain tonic, carminative, diuretic, memory enhancer, refrigerant, and vitalizer properties. Objective: In view of the fact that herbal medicines and/or products are facing challenges towards global acceptance due to the lack of universally accepted standardization method (s), the aim of the current investigation was to develop and validate a high-performance thin-layer chromatography (HPTLC)-densitometry method for the quantification of rutin in the hydroalcoholic extracts of the fruit pulp of B. hispida (HABH). Materials and methods: The separation was achieved in a solvent system consisting of ethyl acetate-formic acid-acetic acid-water at a ratio of 7.2:0.7:0.7:1.4 by volume on a TLC aluminum plate pre-coated with silica gel 60 F254. Quantifications were performed by densitometric scanning under a deuterium lamp at a wavelength of 268 nm in the absorbance mode. The precision, accuracy, and reproducibility of the HPTLC method were validated by the International Conference on Harmonization (ICH) guidelines. Results: The mobile phase employed for HPTLC/TLC resulted in good separation for rutin (R F = 0.357). The limit of detection and limit of quantification of the analysis were found to be 0.1 and 0.3 µg per band, respectively. The rutin concentration in the HABH was found to be 178.28 ± 3.62 µg in 10 mg of the extract. Conclusion: The method developed here is simple, fast, reliable, and sensitive and can be implemented in the analysis and routine quality control of B. hispida formulations containing rutin.

Restricted access

Summary

Three simple, sensitive, and validated methods were developed for the quantitative determination of fosinopril sodium (FOS) and hydrochlorothiazide (HCZ) in the presence of an HCZ impurity, chlorothiazide (CZ). The first method (I) was the ratio difference spectrophotometric method (RD), in which a standard spectrum of 8 µg mL−1 HCZ was used as a divisor, and the difference in amplitude values at 204.6 and 231.2 nm and 290 and 302.6 nm was used for the determination of FOS and CZ, respectively. Meanwhile, for the determination of HCZ, a standard spectrum of 6 µg mL−1 CZ was the chosen divisor, and the amplitude difference at 275 nm and 293.6 nm was selected for the calculation of its concentrations. The second method (II) was mean centering of ratio spectra spectro-photometric method (MCR), which depended on the implementation of the mean-centered ratio spectra in two successive steps and the measurement of the amplitudes of the mean-centered second ratio spectra at 243.4 nm for CZ and peak-to-peak amplitudes at 215.6 and 215.8 nm for FOS and at 223.8 and 224 nm for HCZ. On the other hand, the third method (III) was thin-layer chromatography (TLC)-densitometry at which the chromatographic separation of this ternary mixture was performed using pre-activated silica gel 60 F254 TLC plates and a developing system mixture consisting of ethyl acetate-chloroform-methanol-formic acid (60:40:5:0.5, by volume) with ultraviolet (UV) scanning at 215 nm. The developed methods were validated according to the International Conference of Harmonization (ICH) guidelines and were successfully used for the determination of FOS and HCZ in their pharmaceutical formulations. Also, a statistical comparison between the developed methods and the reported HPLC method was attained. Using Student's t-test and F-test, the results confirmed that there was not any significant difference between them regarding accuracy and precision.

Restricted access

Summary

A novel chromogenic reagent was developed for the identification and detection of organophosphorus herbicide. The organophosphorus herbicide glyphosate is abundantly used, despite being highly toxic to human beings. In the presented communication, we have developed a simple identification and detection technique for the identification of organophosphorus herbicides with the help of thin-layer chromatography. By using this technique, we can easily identify the presence of organophosphorus poisoning by the use of cobalt thiocyanate. By using the cobalt thiocyanate reagent, we can easily identify color change by high-performance thin-layer chromatography (HPTLC). We developed a simple HPTLC method for testing forensic samples. The results obtained are highly useful in the field of organic qualitative analysis, chemistry, forensic science, and toxicology.

Restricted access

Summary

We have recently reported on the effect of the environmental conditions on the quantity of diosgenin. Attempts for the simultaneous quantification of trigonelline and diosgenin using normal-phase silica gel plates were not successful. A high-performance thin-layer chromatography (HPTLC) method was developed using glass-backed plates coated with RP-18 silica gel 60 F254S and acetonitrile-water (7.5:2.5, V/V) as the mobile phase. Trigonelline and diosgenin peaks were well separated with R F values 0.29 ± 0.02 and 0.17 ± 0.01, respectively. The TLC plates were directly scanned at 267 nm for trigonelline and at 430 nm after derivatization with vanillin-sulfuric acid for diosgenin. Linear regression analysis revealed a good linear relationship between the peak area and the amounts of trigonelline and diosgenin in the range of 200–1400 and 50–300 ng per band, respectively. The method was validated in accordance with the International Conference on Harmonization (ICH) guidelines for precision, accuracy, and robustness.

Restricted access

Summary

Losartan potassium (LOS), used in the treatment of hypertension, is metabolized primarily by cytochrome P450. This study investigates the effect of quercetin (QU), a CYP3A4 inducer, on the pharmacokinetics of LOS in rats. A rapid, sensitive high-performance thin-layer chromatography (HPTLC) method was developed and validated for the bioanalysis of losartan using olmesartan as internal standard (IS). The salting-out assisted liquid-liquid extraction (SALLE) employing acetonitrile and MgCl2 gave high recovery of LOS (>90%). HPTLC separation, achieved on silica gel 60 F254 plates employing toluene-ethyl acetate-acetone-formic acid (4:4:1:0.5 V/V) as the mobile phase, with densitometric analysis at 240 nm, gave good linearity (50–1200 ng mL−1) with high intra-day and inter-day precision. LOS in plasma samples was stable when stored under different stability conditions. The pharmacokinetics of LOS was found to be significantly altered when co-administered with QU: C max = 809.8 ± 4.1 at 40 min (t max) to C max = 1124.8 ± 86.6 ng mL−1 at 120 min (t max). This study indicates the chances of herb-drug interaction when LOS is co-administered with QU, leading to its increased bioavailability, potentiating its side effect/toxic manifestation. As QU is abundantly present in herbs and dietary food, patients of LOS therapy need to be cautious while concurrently consuming herbal preparations containing QU. This study also demonstrates the utility of HPTLC as an effective tool for pharmacokinetics study for the estimation of herb-drug interactions.

Restricted access

Summary

Thin-layer chromatography is one of the most efficient analysis methods that have remained very popular for many decades, despite the high rates of modern science development and the relative simplicity of the method discussed. One should note that the frequency of published works is virtually an estimate of the value of the given method by chemists-analysts. The result of the conducted scientometric study permits to make the conclusion on the fact that the TLC method is most often used in its initial kind as a classical ascending elution of plates with a silica gel layer in a saturated chamber in spite of diversity of chambers, ways of elution, and stationary phases [1]. In the present review article, the main directions of the method development, based on the comparison of published works on TLC during 2 time periods with an interval of 10 years (2008 and 2018), are presented.

Restricted access

Summary

2,4-Dichlorophenoxyacetic acid (2,4-D) is a phenoxy group of herbicide used worldwide. As it is extensively used, it has consequential problems on living beings. 2,4-D is degraded into the chlorinated phenols and catechols, and these phenol compounds are more hazardous than the parent 2,4-D herbicide. In this paper, an attempt is made to detect 2,4-dichlorophenol in 2,4-D poisoning cases from human viscera. Sensitive and selective detection of 2,4-dichlorophenol using high-performance thin-layer chromatography (HPTLC) is possible by coupling it with 4-amminoantipyrene in the presence of potassium ferricyanide. Standard 2,4-dichlorophenol and human visceral extract are allowed to run on an HPTLC plate with hexane, acetone, and ethyl acetate as the mobile phase. Mechanistically, 4-amminoantipyrene reacts with 2,4-dichlorophenol in the presence of potassium ferricyanide to form p-quinoneimide which is brick red in color. This known reaction is, for the first time, applied to detect 2,4-dichlorophenol in 2,4-D poisoning cases from human viscera. The formation of brick red color spot on the HPTLC plate allows the easy and confirmed detection of 2,4-dichlorophenol in 2,4-D poisoning case. This HPTLC method is simple and easy to work in laboratory. The reagents do not react with the parent 2,4-dichorophenoxyacetic acid and other organophosphorus, organochlorine, carbamate, and pyrethroid insecticides, i.e., these reagents are specific. The constituents of the viscera (amino acids, peptides, proteins, etc.) and plant material do not interfere with the reagents. The presence of 2,4-dichlorophenol in the same visceral sample is confirmed by gas chromatography-mass spectrometry (GC-MS). The detection limit of reagents for 2,4-dichlorophenol is approximately 0.5 µg.

Restricted access

Summary

The aim of this work was to establish qualitative and quantitative methods for studying Guyinye residue extracts and Turkish gall (TG) cream. This study involved qualitative and quantitative analyses of gallic acid and methyl gallate and determined their preliminary antioxidant activity by high-performance thin-layer chromatography (HPTLC) and thin-layer chromatography-1,1-diphenyl-2-trinitrobenzene hydrazine (TLC-DPPH) in Guyinye residue extracts and TG cream. The thin-layer plate was a polyamide film and glacial acetic acid, methanol, ethyl acetate, and formic acid (10:6:2:1, volume ratio) were used as the developing agent. The scanning wavelength was 280 nm. Results showed that the RF values of gallic acid and methyl gallate were 0.57 ± 0.05 and 0.72 ± 0.05, respectively, and their linearity ranges were 0.001–0.005 and 0.00025–0.00125 mg with correlation coefficients of 0.9990 and 0.9994, respectively, which indicated a good linear relationship. The detection limits of gallic acid and methyl gallate were 3 and 75 ng, respectively, and their quantification limits were 10 and 250 ng, respectively. The average recovery was 98.59% and 98.33%, and the relative standard deviation (RSD) was 2.49% and 3.55%, respectively. Gallic acid was more remarkable than methyl gallate in antioxidant activity. Thus, HPTLC combined with TLC-DPPH, which can rapidly and accurately determine gallic acid and methyl gallate in Guyinye residue extracts and TG cream, is a simple, accurate, and rapid qualitative and quantitative method.

Restricted access

Summary

A simple, specific, and quantitative high-performance thin-layer chromatographic (HPTLC) method has been developed for the quantitative determination of lupeol in 2 marketed formulations, namely, Manasamitra vatakam and Amree plus capsule. Chromatographic development was performed by using a pre-coated silica gel 60 F254 aluminum-backed plate, and the development was carried out using toluene-ethyl acetate (9.48:0.52, V/V) as the optimized mobile phase. The developed TLC plates were derivatized by using anisaldehyde-sulfuric acid reagent. The detection of lupeol was carried out at 600 nm. Box-Behnken design was applied for optimization of the chromatographic conditions, and combinations of factors, such as mobile phase composition (volume of ethyl acetate) (A), chamber saturation time (B), and migration distance (C) likely to affect R F were identified from preliminary trials and further optimized using a response surface design. Among 3 factors, the significant factor found was the volume of ethyl acetate that resulted in higher change in the R F value and can be considered as a critical method parameter. Full factorial design was applied for optimization of extraction efficiency. The factors selected for the optimization process were volume of methanol (A) and duration of extraction (B) with percentage yield of extract as response. The linear ranges were found to be 500–3000 ng per band. The accuracy and precision measured were less than 2% relative standard deviation for lupeol. The sensitivity of the method in terms of the limit of detection (LOD) and the limit of quantification (LOQ) was measured. The proposed method was found to be accurate, precise, reproducible, robust, and specific and can be applicable for the determination of lupeol in the quality-control testing of extract and polyherbal formulations.

Restricted access

Summary

A simple, sensitive, specific, rapid, and accurate high-performance thin-layer chromatographic (HPTLC) method has been developed and validated for the simultaneous estimation of quercetin (QCT) and resveratrol (RSV). Chromatographic separation was performed over pre-coated TLC plates (60 F254, 20 × 10 cm, 250 µm thickness, Merck, Darmstadt, Germany) through a linear ascending technique. Among the different combinations of the mobile phases used, the best separation was achieved in the toluene-ethyl acetate-formic acid (6:2.5:1.5, V/V) mixture. Detection and quantification were achieved at 286 nm through the spectrodensitometric analysis. Analytical performance of the proposed HPTLC method was validated according to the International Conference for Harmonization (ICH) guidelines with respect to linearity, accuracy, precision, detection, and quantitation limits, robustness, and specificity. The calibration curves were linear in the range of 50–2500 ng per spot for both QCT and RSV, with a correlation coefficient (R 2) of 0.998 and 0.997 for the QCT and RSV, respectively. The detection limits were 122.33 and 370.7 for QCT and RSV, respectively, and the quantitation limits were 27.35 and 82.93 for QCT and RSV, respectively. Additionally, forced degradation studies of QCT and RSV were established. The validated HPTLC method was successfully applied to the simultaneous determination of QCT and RSV in the nanoformulation.

Restricted access

Oxytropis falcata Bunge, known as the “king of herbs” in Tibetan medicine, is used for treatment of hyperpyrexia, pain, wounds, inflammation, and anthrax. However, it is difficult to efficiently isolate compounds with high purity from O. falcata because of the complexity of traditional Tibetan medicines. In this study, the 80% ethanol elution fraction from extract by AB-8 macroporous resin column chromatography was demonstrated to have anticancer activity on human hepatoma SMMC-7721 cells in vitro. Then, a high-speed counter-current chromatography (HSCCC) method was successfully established for separation of compounds by using hexane–ethyl acetate–methanol–water (10:4:10:10, v/v/v/v) as the solvent system. Five flavonoids (7-hydroxyflavonone [1], 5,7-dihydroxy-4′-methoxy flavonol [2], 5,7-dihydroxyflavanone [3], 2′,4′-dihydroxychalcone [4], and 2′,4′-dihydroxydihydrochalcone [5]) were obtained in one-step separation with purities of 97.7%, 98.1%, 98.3%, 99.0%, and 98.3%, respectively. Finally, anticancer activities against the growth of SMMC-7721 cells of 5 flavonoids were confirmed. The IC50 values of the separated compounds were 213.45 μg/mL, 197.74 μg/mL, 375.16 μg/mL, 17.44 μg/mL, and 136.83 μg/mL in 24 h, respectively. The present study provided a basis for further development and utilization of this medicinal herb as a source of a new potential anticancer agent.

Open access

High-performance thin-layer chromatography (HPLTC)–densitometry methods are described for the analysis of the anti(retro)virals dolutegravir (D), lamivudine (L), and tenofovir disoproxil fumarate (TDF) in a pharmaceutical tablet product. To the best of our knowledge, no previous quantitative planar chromatography method has been reported in the literature for this combination formulation. The method for L was transferred from a thin-layer chromatography (TLC) screening method published in the Global Pharma Health Fund (GPHF) Minilab Manual designed for identification of counterfeit and substandard drug products using a model process published earlier. D and TDF are not included in the list of drugs for which TLC screening methods are published for the Minilab, but HPTLC–densitometry procedures were developed for them using the transfer process guidelines. L was analyzed simultaneously with TDF on Merck Premium Purity silica gel 60 F plates using the mobile phase ethyl acetate–methanol–acetone–concentrated ammonium hydroxide (30:7:3:1) and densitometric scanning at 254 nm. D was analyzed on a second plate by scanning at 366 nm after chromatography with the chloroform–methanol–formic acid (32:8:2) mobile phase. Data for all three drugs are shown to meet the requirements of the model transfer process for calibration curve r values, assay of tablets relative to their label values, peak purity/peak identity tests, and validation by standard addition analysis of samples spiked at 50%, 100%, and 150% of the label value of active ingredients. A TLC screening method for TDF in the combination product was developed and published online with open access.

Open access
Acta Chromatographica
Authors:
Haiya Wu
,
Mengrou Lu
,
Jiamin He
,
Miaoling Huang
,
Aote Zheng
,
Meiling Zhang
,
Congcong Wen
, and
Jufen Ye

In this study, a precise, rapid, and accurate ultra-performance liquid chromatography–tandem mass spectrometer (UPLC–MS/MS) method for the quantitation of O-demethyl nuciferine in mouse blood was developed, and pharmacokinetics of O-demethyl nuciferine was studied for the first time after sublingual injection and gavage. The study was performed with an UPLC ethylene bridged hybrid (UPLC BEH) (2.1 mm × 50 mm, 1.7 μm) column at 30 °C, using diazepam as the internal standard (IS). The mobile phase consisted of acetonitrile–10 mmol/L ammonium acetate (containing 0.1% formic acid), with a flow rate of 0.4 mL/min for 4 min run time. Multiple reaction monitoring (MRM) modes of m/z 282.1→219.0 for O-demethyl nuciferine and m/z 296.2→265.1 for IS were utilized to conduct quantitative analysis. Protein in mouse blood was directly precipitated with acetonitrile for sample preparation. The linear range was 1–500 ng/mL with r > 0.995, and the lower limits of quantification (LLOQ) was 1 ng/mL. The intra- and inter-day precision of O-demethyl nuciferine in mouse blood were RSD < 14% and RSD < 15%, respectively.r The accuracy ranged from 89.0% to 110.7%, with a recovery higher than 88.9%, while the matrix effect was between 103.1% and 108.7%. We further applied this UPLC–MS/MS method to the pharmacokinetic study on O-demethyl nuciferine after sublingual injection and gavage and determined the bioavailability to be 6.4%.

Open access

The composition and concentration of natural products largely depend on a plant part, development stage, cultivar, and growing conditions. This study evaluated the influence of cultivars and production systems on the composition of natural products (benzoxazinoids) in wheat aerial parts. The determination of benzoxazinoids was performed by combining pressurized liquid extraction, ultra-performance liquid chromatography, and tandem mass spectrometry. Six benzoxazinoids were identified and quantitated in wheat varieties. Significant differences were observed among the examined varieties. The average concentrations of total researched compounds were definitely higher in the organically produced spring wheat cultivars than in the winter ones. The content of these compounds in the same varieties grown under organic and conventional systems showed their higher content under the organic one. The main benzoxazinoids detected in wheat varieties were 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside (DIMBOA-Glc) and 6-methoxy-2-benzoxazolinone (MBOA). The richest sources of benzoxazinoids were Brawura, Łagwa, and Kandela (52.46, 34.67, and 30.14 μg/g dry weight [DW], respectively).

Open access

RKI-1447 is an effective ROCK1 and ROCK2 inhibitor, having anti-invasion and anti-tumor activity. In this study, we used ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) to detect RKI-1447 in rat plasma and investigated its pharmacokinetics in rats. Diazepam was utilized as an internal standard, and an acetonitrile precipitation method was used to process the plasma samples. Chromatographic separation was achieved using a UPLC ethylene bridged hybrid (BEH) column (2.1 mm × 50 mm, 1.7 μm) with a gradient acetonitrile–water mobile phase (containing 0.1% formic acid). Flow rate was set at 0.4 mL/min. Electrospray ionization (ESI)–tandem mass spectrometry in multiple reaction monitoring (MRM) mode with positive ionization was applied: m/z 327.1 → 204.0 and 285.1 → 193.3 for RKI-1447 and internal standard, respectively. The results indicated that within the range of 10–2000 ng/mL, the linearity of RKI-1447 in rat plasma was acceptable (r > 0.995), and the lowest limit of quantification (LLOQ) was 10 ng/mL. Intra-day precision RSD of RKI-1447 in rat plasma was lower than 8%, and inter-day precision RSD was lower than 11%. Accuracy range was between 91.6% and 107.1%, and the matrix effect was between 85.1% and 87.0%. The analysis method was sensitive and fast with suitable selectivity, and was successfully applied in the pharmacokinetics of RKI-1447 in rats. The bioavailability of the RKI-1447 was 7.3%.

Open access

Irinotecan (IRT) is an antineoplastic agent widely used in the treatment of various cancers primarily in colorectal cancer. A new, simple and sensitive high-performance liquid chromatography (HPLC) method coupled with fluorescence detector was developed and validated to quantify IRT and its active metabolite SN38 in the plasma of non-obese diabetic/severe combined immune-deficient mice (NOD/SCID) mice bearing colon tumor. The plasma samples were extracted by precipitation method using acetonitrile with 0.1% formic acid. The chromatographic separation was achieved using mobile phase consisted of water and acetonitrile (57:43 v/v) pH 3 at the flow rate of 0.8 mL/min in C18 column (internal diameter, 250 × 4.6 mm; pore size, 5 μm). The method was validated according to the bioanalytical guidelines defined by Food and Drug Administration (FDA) and European Medicine Agency (EMA). A regression (R ) value of 0.999 and 0.997 for IRT and SN38 suggested the good linearity in the range of 0.1–10 μg/mL and 5–500 ng/mL, respectively. The calculated lower limit of quantification (LLOQ) and limit of detection (LOD) for IRT were 0.1 and 0.065 μg/mL, respectively. However, for SN38, LLOQ and LOD were 5 and 2 ng/mL, respectively. The intra-day and inter-day variations (coefficient of variance; % CV) observed during the validation were found to be within the set limit of 15%. Both accuracy and percentage recovery analyzed and calculated from the quality control samples were in the between the defined range of 85–115%. Plasma samples were found to be stable when stored at room temperature for 2 h, after 2 freeze–thaw cycles and at −80 °C for 2 months. The developed method was successfully applied to study the plasma elimination profile of IRT in NOD/SCID mice with tumor. The results from plasma concentration time profile and pharmacokinetic parameter analyzed suggested the rapid elimination of IRT and SN38 from the plasma of NOD/SCID mice.

Open access

High-performance liquid chromatography (HPLC) is a widely used technique for the simultaneous detection and quantification of different drugs. The purpose of the current study was to develop a simple and cost-effective reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of tizanidine (TZN) HCl and meloxicam (MLX) in rabbit's plasma. Assay of TZN and MLX was performed after extraction of drug from plasma by liquid–liquid extraction technique using methanol and diethyl ether as protein precipitants. Isocratic elution was performed in a Kromasil® C18 column (dimension, 250 × 4.60 mm; particle size, 5 μm) with mobile phase consisting of methanol–water (8:2). Orthophosphoric acid was used to adjust the pH of the mobile phase 3.0, and detection was done at 228 nm. Flow rate was 0.8 mL/min with ambient temperature and average operating pressure of 1400 psig. Retention time of TZN was 2.612 min and that of MLX was 6.960 min with a resolution of 3.18. Both drugs showed satisfactory linearity in the range of 10 to 50 ng/mL with correlation coefficients (R 2) of 0.9989 and 0.9972 for TZN and MLX, respectively. The developed method was validated successfully for linearity, system suitability, intra-day and inter-day accuracy, and precision, robustness, and specificity following International Conference on Harmonization (ICH) guidelines. Conclusively, a precise, stable, reproducible, economical, and suitable method for estimation of pharmacokinetic evaluation was developed and validated.

Open access

Diabetes mellitus and concurrent hypertension disorder are dreadful all over the world and are often managed by some drugs, such as metformin hydrochloride (MFH), enalapril maleate (ENM), and captopril (CAP). In this work, a reliable and fast quantitative analysis of these three components in tablets was carried out by Tchebichef image moment method and multivariate curve resolution with alternating least squares on three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with photodiode array detection (HPLC-PAD). 3D spectra were obtained within only 2 min, and linear quantitative models were established by stepwise regression based on the calculated image moments. Among these two methods, Tchebichef image moment method showed outcome distinction. The correlation coefficients of cross-validation (R Loo-cv) are more than 0.988, while their recoveries are 100.1 ± 1.7% (MFH), 95.4 ± 5.4% (ENM), and 105.3 ± 5.7% (CAP), respectively. The intra- and inter-day precisions (RSD) are less than 5.42%. The proposed methods were also applied to the analysis of real tablets. This study reveals the effectiveness and convenience of the proposed image-moment method that may be a potential technology for the quality control and investigation of drugs in routine analysis.

Open access
Acta Chromatographica
Authors:
Young Sang Kwon
,
Sung-Gil Choi
,
Seung-Min Lee
,
Jong-Hwan Kim
, and
Jong-Su Seo

The applicability of gas chromatography–triple quadrupole mass spectrometry (GC–MS/MS) for determination of dioxins in soil was investigated. The analytical method was validated based on US Environmental Protection Agency (EPA) Method 1613 and European Union (EU) Regulation No. 709/2014 for selectivity, linearity of sensitivity, and instrumental limits of quantification (iLOQs). Method development commenced with determination of retention times for 17 native polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) and selection of characteristic ions from GC–MS/MS spectra. The linearity was measured using 1613 standard solutions (CS1–CS5) containing 0.5 to 200 ng/mL tetrachlorodibenzo-p-dioxin/furan (TCDD/F) congeners, 2.5 to 1000 ng/mL pentachlorodibenzo-p-dioxin/furan (PeCDD/F) to heptachlorodibenzo-p-dioxin/furan (HpCDD/F) congeners, and 20 to 2000 ng/mL octachlorodibenzo-p-dioxin/furan (OCDD/F) congeners. The correlation coefficient (R 2) values ranged between 0.9990 and 0.9999, and the iLOQ values ranged from 0.052 to 0.350 pg/μL for TCDD/F congeners, with a relative standard deviation of 2.7–9.6%. The entire analytical method was verified by analysis of certified reference materials (BCR-529 and BCR-530), and the recoveries were 71.79–103.87% and 81.50–103.12%, respectively. Thus, the GC–MS/MS system provides an alternative to GC–high-resolution MS for the simultaneous determination of TCDD/F congeners in soil.

Open access

A rapid, simple, and sensitive method has been developed for the analysis of pyrethroid herbicides in fruits by using headspace in-tube microextraction (HS-ITME) coupled with reverse-flow micellar electrokinetic capillary chromatography (RF-MECC). In the newly developed method, by placing a capillary filled with background electrolyte (BGE) of RF-MECC in the HS above the sample solution, the pyrethroid herbicides were extracted into the acceptor phase in the capillary. After extraction, electrophoresis of the extracts in the capillary was carried out. The influence of some essential BGE components such as sodium dodecyl sulfate (SDS) and organic modifiers concentrations was investigated. Extraction parameters were also systematically investigated, including the extraction temperature, extraction time, salt concentration, and volume of the sample solution. Under the optimized conditions, enrichment factors for three pyrethroids were 309, 133, and 288, respectively. The proposed method provided a good linearity, low limits of detection (below 1.00 ng/mL), and good repeatability of the extractions (relative standard deviations [RSDs] below 7.83%, n = 6). The fruit samples were analyzed by the proposed method, and the obtained results indicated that the proposed method provides acceptable recoveries and precisions.

Open access
Acta Chromatographica
Authors:
Shaoshi Wen
,
Zixin Zhang
,
Xiaopeng Chen
,
Jinchang Liu
,
Haiyang Yu
,
Lifeng Han
,
Lijun Jin
,
Yi Zhang
, and
Tao Wang

Uric acid (UA) is the final product of purine metabolism in humans. Elevated serum UA levels lead to the development of hyperuricemia, gout, kidney diseases, and metabolic syndrome. Accurate determination of UA plays a critical role in clinical diagnosis and laboratory investigation. An ultra-performance liquid chromatography (UPLC) with ultraviolet detection method has been developed and validated for UA analysis. Separation was achieved by a Waters ethylene bridged hybrid (BEH) Amide column (50 mm × 2.1 mm i.d., 1.7 μm) with acetonitrile and 0.1% acetic acid in deionized water in the proportion of 90 to 10 (v/v) as the mobile phase. The limit of detection and limit of quantification were 0.09 and 0.18 μmol/L, respectively. The method was validated by evaluating recovery (98.37–104.20%), accuracy (0.47–0.90%), and precision (1.24–1.81% for intra-batch and 1.76–3.98% for inter-batch). This method was then applied to UA determination in rat serum of hyperuricemia model. The results from UPLC, high-performance liquid chromatography (HPLC), and uric acid kits (phosphor-tungstic acid-based kit and uricase-based kit) were compared. The UPLC results were in very good agreement with HPLC. The developed method could be employed as a useful tool for the determination of UA in biofluids.

Open access
Acta Chromatographica
Authors:
Shanjiang Chen
,
Miaoling Huang
,
Zheng Yu
,
Jiamin He
,
Binge Huang
,
Xianqin Wang
,
Jianshe Ma
, and
Congcong Wen

8-O-Acetylharpagide is the main active component of the herb Ajuga decumbens, which possesses anti-tumor, anti-virus, and anti-inflammation properties. In this study, ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was used to measure the concentration of 8-O-acetylharpagide in mouse blood, with subsequent investigation of the pharmacokinetics of the drug after intravenous or oral administration. Shanzhiside methyl ester was used as an internal standard, and the acetonitrile precipitation method was used to process the blood samples. Chromatographic separation was achieved using an ultra-performance liquid chromatography ethylene-bridged hybrid (UPLC BEH) column (2.1 mm × 50 mm, 1.7 μm) with a gradient methanol–water mobile phase (containing 0.1% formic acid). The flow rate was 0.4 mL/min, and the elution time was 5.0 min. 8-O-Acetylharpagide was quantitatively measured using electrospray ionization (ESI) tandem mass spectrometry in multiple reaction monitoring (MRM) mode with positive ionization. The result indicated that, within the range of 5–500 ng/mL, the linearity of 8-O-acetylharpagide in mouse blood was satisfactory (r > 0.995), and the lower limit of quantification (LLOQ) was 5 ng/mL. Intra-day precision relative standard deviation (RSD) of 8-O-acetylharpagide in blood was lower than 9%, and the inter-day precision RSD was lower than 13%. The accuracy range was between 94.3% and 107.1%, average recovery was higher than 91.3%, and the matrix effect was between 100.8% and 110.8%. This analytical method was sensitive and fast with good selectivity and was successfully applied to perform pharmacokinetic studies of 8-O-acetylharpagide in mice. The bioavailability of 8-O-acetylharpagide was 10.8%, and the analysis of the primary pharmacokinetic parameters after oral and intravenous administration indicated that 8-O-acetylharpagide had a significant first pass effect after oral administration.

Open access

Objectives

A simple, rapid, selective, and sensitive high-performance liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous determination of levocetirizine dihydrochloride and montelukast sodium in human plasma using fexofenadine hydrochloride as an internal standard.

Method

Liquid–liquid extraction of both drugs and internal standard from plasma into ethyl acetate was used for sample preparation and analysis. Separation of both drugs and internal standard was achieved on an Inertsil ODS-3 (4.6 mm × 50 cm, dp 5 μm, particle size) column using an isocratic mobile phase of acetonitrile and 10 mM ammonium formate adjusted to pH 8 with 50 μL ammonium hydroxide in composition of 73:27 (v/v) at a flow rate of 0.7 mL/min. The LC–MS/MS was operated under the multiple reaction monitoring mode (MRM) using an electrospray ionization technique. Mass parameters were optimized to monitor transitions at m/z [M + H]+ 389.0 → 200.8 for levocetirizine dihydrochloride, m/z [M + H]+ 586.2 → 422.2 for montelukast sodium, and m/z [M + H]+ 502.2 → 466.0 for fexofenadine hydrochloride.

Results

The method was found to be linear in the range of 1–500 ng/mL for both drugs. The intra-day and inter-day precision were in the range of 0.96–1.92% and 1.03–1.55%, respectively. Matrix effect was acceptable with %RSD < 15.

Conclusion

The proposed method was validated and successfully applied for a pharmacokinetic study of both drugs in human plasma after oral administration of their pharmaceutical preparation.

Open access

SimiaoYong'an decoction, a traditional Chinese medicine formula consisting of four herbs, has been widely used for the treatment of gangrene disease. However, its clinical application is restricted due to the lack of an effective quality control method that covers the main active compounds in the formula. In this study, a high-performance liquid chromatography with diode-array detection (HPLC–DAD) method was established for the simultaneous determination of 13 active compounds including harpagide, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, ferulic acid, isochlorogenic acid B, isochlorogenic acid A, isochlorogenic acid C, angoroside C, harpagoside, cinnamic acid, glycyrrhizic acid, and ligustilide. Separation of these compounds was achieved using a Kromasil 100-5-C18 column with a gradient elution program consisting of acetonitrile and 0.4% phosphoric acid solution. The specificity, linearity, precision, repeatability, and accuracy tests were implemented to validate the method. The validated method was successfully applied for determination of 13 components from several finished batches of SimiaoYong'an decoction. The results demonstrated that the established method was accurate, reliable, and could be used as a suitable quality control method for the quantification of SimiaoYong'an decoction.

Open access

A simple, rapid, and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the simultaneous quantitation of PA-824 and moxifloxacin in rat plasma using carbamazepine as an internal standard (IS). The sample preparation involved a one-step protein precipitation method with methanol. The separation was performed on Inertsil® ODS3 C18 column (150 mm × 4.6 mm, 5 μm) and maintained at 30 °C. The mobile phase consisted of 0.1% formic acid in acetonitrile–water (90:10 v/v) with fast isocratic elution at a flow rate of 0.6 mL/min and a run time of 10 min. A mass spectrometer was run in the positive ion electrospray ionization (ESI) mode using multiple reaction monitoring (MRM) to monitor the mass transitions. The MRM transitions were chosen to be m/z 360.1 → m/z 175.0 for PA-824, m/z 402.0 → m/z 383.9 for moxifloxacin, and m/z 237.1 → m/z 194.0 for IS. The method was fully validated in terms of selectivity, linearity, accuracy, precision, matrix effect, recovery, and stability, respectively. The method was successfully applied to drug–drug interaction (DDI) study of PA-824 and moxifloxacin in rats. The results show that the main pharmacokinetic parameters of PA-824, namely, T max, t 1/2, and AUC(0–t), increased more in the PA-824 and moxifloxacin group than in the PA-824 group. However, there were little changes in the main pharmacokinetic parameters of moxifloxacin from single and combined groups.

Open access
Acta Chromatographica
Authors:
Azazahemad A. Kureshi
,
Chirag Dholakiya
,
Tabaruk Hussain
,
Amit Mirgal
,
Siddhesh P. Salvi
,
Pritam C. Barua
,
Madhumita Talukdar
,
C. Beena
,
Ashish Kar
,
T. John Zachariah
,
Premlata Kumari
,
Tushar Dhanani
,
Raghuraj Singh
, and
Satyanshu Kumar

Xanthones are well recognized as chemotaxonomic markers for the plants belonging to the genus Garcinia. Xanthones have many interesting pharmacological properties. Efficient extraction and rapid liquid chromatography methods are essentially required for qualitative and quantitative determination of xanthones in their natural sources. In the present investigation, fruit rinds extracts of 8 Garcinia species from India, were prepared with solvents of varying polarity. Identification and quantification of 3 xanthones, namely, α-mangostin, β-mangostin, and γ-mangostin in these extracts were carried out using a rapid and validated ultra-high-performance liquid chromatography–photodiode array detection (UHPLC–PDA) method at 254 nm. γ-Mangostin (3.97 ± 0.05 min) was first eluted, and it was followed by α-mangostin (4.68 ± 0.03 min) and β-mangostin (5.60 ± 0.04 min). The calibration curve for α-mangostin, β-mangostin, and γ- mangostin was linear in the concentration range 0.781–100 μg/mL. α-Mangostin was quantified in all 4 extracts of Garcinia mangostana. Its content (%) in hexane, chloroform, ethyl acetate, and methanol extracts of G. mangostana was 10.36 ± 0.10, 4.88 ± 0.01, 3.98 ± 0.004, and 0.044 ± 0.002, respectively. However, the content of α-mangostin was below the limit of detection or limit of quantification in the extracts of other Garcinia species. Similarly, β-mangostin was quantified only in hexane (1.17 ± 0.01%), chloroform (0.39 ± 0.07%), and ethyl acetate (0.28 ± 0.03%) extracts of G. mangostana. γ-Mangostin was quantified in all 4 extracts of G. mangostana. Its content (%) in hexane, chloroform, ethyl acetate, and methanol extracts of G. mangostana was 0.84 ± 0.01, 1.04 ± 0.01, 0.63 ± 0.04, and 0.15 ± 0.01, respectively. γ-Mangostin was also quantified in hexane (0.09 ± 0.01), chloroform (0.05 ± 0.01), and ethyl acetate (0.03 ± 0.01) extracts of G. cowa, ethyl acetate extract of G. cambogia (0.02 ± 0.01), G. indica (0.03 ± 0.01), and G. loniceroides (0.07 ± 0.01). Similarly, γ-mangostin was quantified in 3 extracts of G. morella, namely, hexane (0.03 ± 0.01), chloroform (0.04 ± 0.01), and methanol (0.03 ± 0.01). In the case of G. xanthochymus, γ-mangostin was quantified in chloroform (0.03 ± 0.001) extract only. α-Mangostin and β-mangostin were not detected in any of 4 extracts of G. pedunculata.

Open access

Simple and economical methods for chiral separations are always needed in synthesis and drug development and as biomarkers, besides many other useful applications. Cyclodextrins (CDs) are chiral host molecules and have been used to separate a number of chiral analytes. In this study, we have successfully prepared electrospun films of β-CD incorporated into polyvinyl alcohol (PVA) through glutaraldehyde (GA) crosslinking. These films of β-CD-PVA-GA electrospun fibers are characterized by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM), which were subsequently used for thin-layer chromatography (TLC)-based enantiomeric separation of histidine and serine pairs. Amino acids were detected by spraying the chromatograms with the ninhydrin solution. Among various solvent systems employed, it was found that the separation of serine enantiomers with a resolution of 1.6 was possible with the mobile phase ethanol–butanol–ethyl acetate–water–acetone (4:5:5:0.5:1.5, v/v), and histidine enantiomers with a resolution of 1.4 were possible with the mobile phase ethanol–butanol–ethyl acetate–water–acetone (4:5:4.5:0.5:1.5, v/v). This proves that the prepared stationary phase is efficient in enatioresolution of selected amino acid pairs and can be further examined for physiological samples.

Open access

A hollow-fiber liquid-phase microextraction (HF-LPME), followed by high-performance liquid chromatography–ultraviolet (HPLC–UV) method for the trace determination of carvedilol (β-blocker) in biological fluids, has been described. The separation was achieved using Inertsil ODS-3 C18 (250 mm × 4.6 mm, 3 μm) column with a mobile phase composition of 10 mM phosphate buffer (pH 4.0)–acetonitrile (50:50, v/v) at a flow rate of 1.0 mL/min, under isocratic elution. Several parameters (i.e., type of organic solvent, donor phase pH, concentration of acceptor phase (AP), stirring rate, extraction time, and salt addition) that affect the extraction efficiency were investigated. The optimum HF-LPME conditions were as follows: dihexyl ether as an organic solvent; donor phase pH, 10.7; 0.1 M HCl (AP); 1100-rpm stirring rate; 60-min extraction time; and no salt addition. These parameters have been confirmed using design of experiments. Under these conditions, an enrichment factor of 273-fold was achieved. Good linearity and correlation coefficient were obtained over the range 5–1000 ng/mL (r 2 = 0.9994). Limits of detection and quantitation were 1.2 and 3.7 ng/mL, respectively. The relative standard deviation at 3 different concentration levels (5, 500, and 1000 ng/mL) were less than 13.2%. Recoveries for spiked urine and plasma were in the range 80.7–114%. The proposed method is simple, sensitive, and suitable for the determination of carvedilol in biological fluids.

Open access

Summary

A sensitive and simple high-performance thin-layer chromatographic method is developed and validated according to the International Conference on Harmonisation (ICH) guidelines. The procedure was applied for the estimation of orlistat in different pharmaceutical preparations. In the proposed method, thin-layer chromatography aluminum sheets pre-coated with silica gel were employed as the stationary phase. A number of solvent mixtures were used as the mobile phase for trials to obtain compact bands of orlistat. The solvent mixture consisting of chloroform and methanol (98:2) was found to be the best. The data obtained from the calibration curves of standard orlistat showed a good linear relationship over the concentration range of 1000–3800 ng per band with respect to the area. Scanning was performed at λ = 200 nm, where the correlation coefficient (R 2) was 0.970, and the linear regression equation was found to be: y = 4.1419x − 4181.1. After revealing of the spots by anisaldehyde–conc. sulfuric acid, compact violet bands were obtained and, accordingly, scanning was performed at λ = 600 nm, where a good linear relationship over the concentration range of 600–4000 ng per band with respect to the area was obtained. The correlation coefficient (R 2) was 0.991 with a linear regression equation: y = 4.025x − 1159.3. The method was evaluated regarding accuracy, precision, limits of detection and quantification, and robustness. Revealing of the spots by anisaldehyde–conc. sulfuric acid improved the sensitivity of the method and increased the range within which a linear relationship between concentration and response occurs.

Restricted access

Summary

Genetic mutations, chromosomal breaks, and chromosomal rearrangements, which are induced due to organic impurities, are considered as potential genotoxic impurities. The European Medicines Agency (EMA) and the United States Food and Drug Administration (US FDA) have set a threshold of toxicological concern (TTC) of 1.5 µg per person per day for each impurity. A sensitive and simple high-performance thin-layer chromatography (HPTLC) method has been developed and validated for determination of the potential genotoxic impurity, namely, 2-chloroaniline, at trace levels in quetiapine fumarate. The method was found to be specific and selective for the application. The limit of detection (LOD) and limit of quantification (LOQ) for quetiapine fumarate were found to be 1.27 and 3.87 ng per band. The LOD and LOQ values for 2-chloroaniline were found 0.018 and 0.054 ng per band, respectively. The calibration curve for 2-chloroaniline was linear over a concentration range from 2.5 to 12.5 ng. The method was found to be specific, precise, linear, and accurate and can be employed for monitoring and estimation of levels of 2-chloroaniline in quetiapine fumarate.

Restricted access