Browse Our Chemical Engineering Journals

Chemical engineering is an engineering branch that deals with the chemical production and manufacture of products that undergo chemical processes. This includes equipment design, creating systems and processes to refine raw material, as well as mixing, compounding, and processing chemicals to create products.

Chemistry and Chemical Engineering

You are looking at 41 - 50 of 1,250 items for

  • Refine by Access: Content accessible to me x
Clear All

Abstract

Objective

To establish a method for the high-performance liquid chromatography (HPLC) fingerprint and content determination of Wuwei Zhenju Tablets, and combine with chemical pattern recognition analysis to provide basis for its quality evalution.

Methods

Based on HPLC, taking the chromatographic peak of puerarin as the reference peak, the fingerprints of 10 batches of Wuwei Zhenju Tablets were established and the similarity evaluation was carried out to determine the common peaks. SPSS 26.0 and SIMCA 14.1 software were used to evaluate the overall quality of Zhenju Tablets by cluster analysis and principal component analysis. The contents of chlorogenic acid, puerarin, daidzin, isochlorogenic acid B, isochlorogenic acid A and aurantio-obtusin in the samples were determined by the same method.

Results

Twenty-six common peaks were identified in the fingerprints of 10 batches of Wuwei Zhenju Tablets, and the similarity evaluation was greater than 0.985. Ten chromatographic peaks were identified as neochlorogenic acid, chlorogenic acid, caffeic acid, puerarin, daidzin, isochlorogenic acid A, isochlorogenic acid B, isochlorogenic acid C, aurantio-obtusin and betaine. Combined with cluster analysis and principal component analysis, 10 batches of samples can be clustered into two categories, which can distinguish different Zhenju tablets. The model established in pattern recognition research can accurately identify Wuwei Zhenju tablets, and the prediction results are ideal. The six index components had a good linear relationship in their respective concentration ranges. The contents of chlorogenic acid, puerarin, daidzin, isochlorogenic acid B, isochlorogenic acid A and aurantio-obtusin in 10 batches of Wuwei Zhenju Tablets were 2.902–5.819, 3.693–49.680, 1.449–10.654, 2.768–7.724, 2.941–6.343 and 0.071–0.089 mg g−1, respectively.

Conclusion

The HPLC fingerprint and multi-component content determination method of Wuwei Zhenju Tablets were established for the first time. The method is simple, efficient and accurate, and can effectively provide experimental basis for the quality control and evaluation of the preparation.

Open access

Az erdőállományok talajvíz utánpótlódásra gyakorolt hatásának vizsgálata kecskemét-ménteleki mintaterületen

Investigation of the impact of forest stands on groundwater recharge in the Kecskemét-Méntelek study area

Agrokémia és Talajtan
Authors:
András Szabó
,
Zoltán Gribovszki
,
Péter Kalicz
,
Ján Szolgay
,
Zsolt Gácsi
, and
Bence Bolla

Az Alföldet, azon belül is különösen a Homokhátságot érintő talajvízszint süllyedés, súlyos ökológiai és gazdasági következményekkel is járó problémakör. A jelenség hátterében álló lehetséges okokkal kapcsolatban több évtizede zajlik kutatómunka, ugyanakkor ezek relatív súlyának meghatározása a mai napig tudományos vita tárgyát képezi.

Több szerző is kiemeli az erdőtelepítések talajvízszint csökkentő hatásának fontosságát. Ez a hatás két módon, a vegetáció vízfelvétele, illetve a csapadékból történő utánpótlódás csökkentése (intercepció, talajnedvesség felvétel) által jelentkezhet. Ezen mechanizmusok működését vizsgáltuk meg egy akác (Robinia pseudoacacia) és egy fekete fenyő (Pinus nigra) állomány esetében a Homokhátságon, Kecskemét-Ménteleken kialakított mintaterületünkön, 90, 150 és 200 cm-es mélységben, nagy időbeli felbontással mért talajnedvesség, illetve talajvíz adatokra alapozva.

Az adatok alapján feltételezhető, hogy a talajvízből nem történik közvetlen, vagy közvetett vízfelvétel, aminek oka vélhetően a gyökérzóna és a talajvíz közti igen jelentős horizontális távolság. A talajnedvesség esetében a sekélyebb rétegekben egyértelműen jelentkezik az erdőállományok szezonális szárító hatása. Ugyanakkor a mélyebb rétegek talajnedvesség adatai alapján kijelenthető, hogy a csapadékból történő talajvíz visszatöltődésre leginkább az akác állomány alatt van elméleti lehetőség. A látszólagos ellentmondás feltételezhetően a gyökérzet által kialakított makropórusok hatásával magyarázható. Ezt támasztja alá az akác és fekete fenyő állományok közti igen jelentős eltérés is.

Következtetésünk, hogy az erdőállományok lokálisan jelentősen eltérő hatást gyakorolhatnak a talajvízszintre. Ezért a lezajló folyamatok hátterét, általános jellegű megállapítások helyett, az adott hidrológiai rendszer több elemét vizsgáló monitoring adataira alapozva lehetséges csak felderíteni.

Open access
Acta Chromatographica
Authors:
Waqar Siddique
,
Zulcaif
,
Hassaan Umar
,
Sufyan Junaid Usmani
,
Muhammad Waqas
,
Maria Gul
, and
Mubashra Gul

Abstract

The prevalence of diabetes is increasing day by day as per a report by the year 2045, 1 out of every 8th individuals may suffer from diabetes. This research article focuses on developing and validating Metformin and Dapagliflozin in combination by using high-pressure liquid Chromatography (RP-HPLC). The validation of the method was followed as per the guidelines provided by the International Conference on Harmonization (ICH) and United States Pharmacopeia (USP). Separation of both drugs takes place in less than 4 min. This separation takes place using Phosphate buffer (pH 6.8) and acetonitrile in a 45:55 (v/v) ratio at a 1.0 mL min−1 flow rate. Furthermore, studies on both drugs were conducted by using the bulk and pharmaceutical dosage forms (Tablets). The developed method was accurate as drug recoveries in both cases of Metformin, and Dapagliflozin ranged between (100.8, 99.6, 98.8%) to (100.8, 99.3, and 101.5%) respectively having a concentration range of solutions between 70, 100 and 130 μg mL−1 dilution. The recommended method for simultaneous quantification of Metformin and Dapagliflozin was established and validated and no excipient interactions were found.

Open access
Progress in Agricultural Engineering Sciences
Authors:
María Nieves Andrín
,
María Angeles Guraya
,
Cecilia Accoroni
,
Pablo Antonio Torresi
,
Ezequiel Godoy
, and
María Agustina Reinheimer

Abstract

This study investigates sustainable methods for producing protein from soybean expeller via pH-shifting processes, aiming to reduce water usage in alkaline extraction by adjusting solid-to-liquid ratios per cycle and employing isoelectric precipitants like lactic acid and lactic acid bacteria (Lactiplantibacillus plantarum and Lactococcus Lactis) to enhance functional and antioxidant properties over a wide pH range. Results indicate that the most efficient approach involves three 1:10 (w/v) extraction cycles with lactic acid bacteria as precipitants, demonstrating high productivity and low specific water consumption. Protein content and recovery yield showed no significant differences compared to alternatives with higher water consumption or less eco-friendly precipitants. Despite lower solubility, protein products precipitated with lactic acid bacteria formed stable emulsions, exhibiting superior free radical scavenging activity.

Open access

Abstract

Microencapsulation of flaxseed oil (FO) has received lots of attention in the food and biopharmaceutical industries. To produce FO microcapsules, aqueous emulsions of FO with polymeric carbohydrates (maltodextrin (MD) with dextrose equivalent (DE) 19, gum Arabic (GA) and modified starch (MS)) were prepared by a rotor stator homogenization and subsequently, dehydration of emulsions were performed by spray drying (SD). The objective of this research was to study the effects of different combinations of polymeric carbohydrates with FO in emulsion to obtain maximum encapsulation efficiency (EE). A 3 factorials–3 levels Box–Behnken design was used for the optimization purpose. The maximum EE was achieved using 0.79 MD-GA ratio, 20.23% MS and 24.62% FO in emulsion. Microcapsules obtained by optimum condition had EE 77.68%, particle size (D 32) 120.0 ± 0.43 μm, moisture content1.6 ± 0.13%, wettability 192 ± 5.5 s, solubility 75.49 ± 1.3%, bulk density 0.31 ± 0.025 g mL−1, tapped density 0.36 ± 0.01 g mL−1, Carr's Index 13.88 ± 0.01% and Hausner Ratio 1.16 ± 0.01.

Open access

Abstract

During the testing of laboratory Voriconazole API batches, one unidentified impurity (IMP-5.312) was detected employing the Pharmeuropa HPLC technique at a level in excess of 0.10%. This IMP-5.312 was synthesized and then characterized as 6-(3-(2,4-difluorophenyl)-3-hydroxy-4-(1H-1,2,4-triazol-1-yl) butan-2-yl)-5-fluoropyrimidin-4-ol by the corresponding spectral information (MS, 1H-NMR, 13C-NMR, and IR). The IMP-5.312 impurity was effectively quantified using an enhanced HPLC based-technique that was developed as well as validated. The approach made use of a Novapak C18 column with an inner diameter of 3.9 mm and a length of 150 mm (4.0 µm) for chromatographic separation. The analysis of IMP-5.312 was made at 45 °C, with a flow rate (isocratic) of 1.0 mL min−1 and a 256 nm detection wavelength. Acetonitrile, methanol, and 0.1% aqueous trifluoro acetate buffer (pH 4.0) were mixed at a ratio of 15:30:55 (v/v/v) to create the mobile phase for a 20 μL sample injection. The linearity range of 0.25281–1.51690 μg mL−1 had a correlation coefficient more than 0.99942, and the accuracy ranged from 89.3 to 100.3%. It was noted that the established HPLC based-technique was sensitive, specific, and precise. The technique was executed on the current batches of VRC API for IMP-5.312 analysis, and the outcomes were good. For quality control purposes during the manufacturing procedure of VRC, the identification as well as analysis of IMP-5.312 should be helpful. The in silico approach was applied to predict the IMP-5.312 toxicity. The reports indicated that IMP-5.312 in non-mutagenic and categorized as ICH M7 class-5 impurity.

Open access

Abstract

In this investigation, a rapid and reliable ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique was developed for quantification of veliparib in rat plasma and used the method to study the pharmacokinetics and bioavailability of veliparib in rats after oral (6 mg kg−1) and intravenous (2 mg kg−1) administration. Plasma samples were protein precipitated with acetonitrile using midazolam as internal standard. A UPLC HSS T3 chromatographic column was utilized for separation, with a mobile phase consisting of methanol-water-formic acid in gradient elution procedure. Quantitative analysis was performed using multiple reaction monitoring in electrospray positive-ion mode. Veliparib exhibited excellent linearity within the 1–1,000 ng mL−1 range (r > 0.99). The intra- and inter-day precision of veliparib were both within 15%, and the accuracy ranged from 93.7 to 107.7%. The average recovery was above 86%, and the matrix effect was 89.0–95.8%. The AUC(0-t) values for oral and intravenous administration were 1014.7 ± 42.9 and 647.2 ± 85.2 h ng mL−1, respectively, resulting in a bioavailability of 52.3%. The UPLC-MS/MS method established in this study featured a low sample injection volume, a low quantification limit, a short chromatographic runtime, high sensitivity, and selectivity. The developed method can be used for the pharmacokinetic analysis of veliparib in both preclinical and clinical studies.

Open access

This study assesses the elemental composition of Egyptian glauconite sediments, focusing on potentially toxic elements (PTEs) and macronutrients. The primary aim is to evaluate the feasibility of utilizing these sediments as a natural source of potassium for agricultural purposes, besides conventional chemical fertilizers like potassium sulfate. To quantify elemental content, chemical analysis was employed across five distinct grain size fractions after grinding glauconite rock. The assessment included potassium, calcium, sodium, and PTE concentrations, utilizing potassium chloride (KCl) and ammonium acetate lactate (AL Solution) as single extractants, and the BCR extraction protocol, in addition to measuring the pseudo-total content of these elements. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) facilitated a comparative analysis of elemental concentrations. Results indicate PTE concentrations within European Union regulations, with an absence of cadmium. Glauconite samples contain approximately 3–3.3% potassium by weight, alongside significant amounts of essential macronutrients (calcium, magnesium) and micronutrients (copper, nickel, zinc) crucial for agriculture. BCR sequential extraction protocol results closely align with or slightly surpass pseudo-total content results. Notably, the AL Solution demonstrates high efficiency compared to KCl or acetic acid in the first step of the BCR method. BCR sequential protocol provides valuable insights into various elemental forms and potential mobility. Overall, this study reveals that glauconite has the potential to serve as a promising alternative potassium fertilizer without causing adverse environmental impacts.

Open access

Abstract

Monitoring medications in biological fluids is an essential aspect of patient care, particularly in cases of altered mental status where accurate diagnosis, effective treatment, and even forensic examinations are crucial. In this study, a new approach combining hydrophobic-deep-eutectic and solvent-bar-microextraction (HDE-SBME) followed by a high-performance liquid chromatography-diode array detector (HPLC-DAD) was developed for the simultaneous determination of desipramine, clomipramine, as antidepressant and carbamazepine as antiepileptic agents in untreated human urine and plasma samples. The HDE solvents, synthesized using various ratios of menthol and fatty acids, were utilized in the SBME setups. Computational methods were employed to predict the structure and modes of interaction between HDE and the chosen analytes. Central composite design methodology (CCD) was used for multivariate optimization of the effects of different parameters influencing the extraction efficiency of the proposed method. Under optimized experimental conditions, the calibration graph of the spiked selected drugs in urine and plasma samples demonstrated excellent linearity (R 2 ≥ 0.994), with limits of detection/quantification below 0.60/2.02 μg L−1. The extraction recoveries achieved were 88–97%, and the repeatability/reproducibility (RSD%, n = 5) was less than 6.12/7.57. The proposed method was successfully applied to determine selected drugs in patients' urine and plasma samples. The proposed method detects three drugs in patients' urine and plasma samples without using toxic volatile organic solvents. The proposed microextraction technique exhibited a confident sensitivity, feasible operation, and simplicity compared with other published methods. Thus, it can be considered a promising method for monitoring the therapeutic levels of specific antidepressant and antiepileptic drugs in urine and plasma samples.

Open access

Abstract

The primary objective of the present inquiry is to formulate a sustainable method employing Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) for determination of Amlodipine (AM) and Irbesartan (IRB) simultaneously, compounds commonly prescribed for hypertension treatment. Existing literature underscores the absence of a comprehensive method in this regard. This research endeavors to align with the tenets of green chemistry by seamlessly integrating Analytical Quality by Design (AQbD) with RP-HPLC, replacing environmentally hazardous chemical modifiers with eco-friendly solvents. Identifying the critical variables as the 70% ethanol level and flow rate, a central composite design is applied for optimization. The separation is achieved utilizing a Phenomenex Luna column (C 18 , 250 mm × 4.6 mm i.d, 5 μm) with a mobile phase comprising ethanol and 0.1 % o-phosphoric acid in a 70:30 v/v ratio, flowing at 0.8 mL min−1, and detection wavelength of 242 nm. Green assessment methodologies are implemented to gauge the adherence of the proposed RP-HPLC method to eco-friendly principles while ensuring efficiency in chromatographic performance. The current developed method is rapid with retention time of 2.3 and 3.3 min for AM and IRB respectively and having a wide linear range from 55 to 130 μg mL−1, which makes the suitable for the accurate quantification of AM and IRB simultaneously in bulk and tablet dosage form, there by minimize environmental impact by providing a conscientious choice for the routine analysis which is achieved through the amalgamation of AQbD with a sustainable approach.

Open access