Browse Our Chemical Engineering Journals

Chemical engineering is an engineering branch that deals with the chemical production and manufacture of products that undergo chemical processes. This includes equipment design, creating systems and processes to refine raw material, as well as mixing, compounding, and processing chemicals to create products.

Chemistry and Chemical Engineering

You are looking at 1 - 50 of 33,660 items for

  • Refine by Access: All Content x
Clear All

Abstract

As the world is facing numerous global ecological issues at once, the question arises of what will help mitigate and solve contemporary matters related to resource management or climate change without devastating the economies. Fortunately, the widespread application of the circular economy would help countries worldwide simultaneously ensure economic growth without significant environmental deterioration, essentially decoupling the two factors. While Hungary’s contribution to environmental problems is not significant in absolute terms, the economic sector’s circular transition could help the country decrease its impact in relative terms and pave the path for a green economy. Nevertheless, companies, especially SMEs, tend to struggle the most with the initial phases of the shift thus it is crucial to assess the factors that prevent and support their transition.

Open access

Abstract

This study establishes a method for rapid detection of clonidine and cyproheptadine in foods of animal origin. In order to obtain the best detection method, capillary zone electrophoresis (CZE), large volume sample stacking (LVSS), and sweeping-micellar electrokinetic capillary chromatography (sweeping-MEKC) were used respectively. The limits of detection (LODs) of clonidine and cyproheptadine by LVSS-CZE were 0.028 μg mL−1 and 0.034 μg mL−1, and those by sweeping-MEKC were 0.023 μg mL−1 and 0.031 μg mL−1, respectively. Compared with the CZE method, the two online pre-concentration technologies have greatly improved the detection sensitivity and achieved good enrichment results. However, compared with the sweeping-MEKC system, the LVSS system consumed a longer time and was greatly affected by the actual sample matrix. The sweeping-MEKC method was proved to be suitable for real sample analysis. Under the best sweeping-MEKC conditions, clonidine and cyproheptadine could be well separated within 8 min and good linear relationships in the range of 0.1–1.0 μg mL−1 (r 2 > 0.99) were obtained. This method was successfully applied to the determination of clonidine and cyproheptadine in animal-derived foods with the recoveries of 82.3%–90.1% and the relative standard deviations (RSDs) less than 3.11%. The sweeping-MEKC method is simple to operate and has great potential in the rapid detection of clonidine and cyproheptadine in animal-derived foods.

Open access

Abstract

Potential functional food bakery products were developed and characterized based on White Lupin (Lupinus albus cv. Nelly) flour. Analytical properties of the seeds resemble to previously described Lupinus species, with significantly high protein content (45%). The high protein and dietetic fiber content of the seeds makes Lupin flour suitable to develop potential functional food products with high nutritional values. Results of the development of sweet biscuits and salty crackers enriched with Lupin flour are presented. Sensory evaluation of the bakery products was carried out by 15 panelists using the nine points hedonic scale. Heat stability of White Lupin proteins were investigated by gel-electrophoretic analysis, White Lupin proteins are quite stable at 140°C, after 35 min heating the biscuits still contain 69% of the original amount of proteins. Baking conditions were optimized also based on gel-electrophoretic experiments, the optimal baking time was 30 min at 140°C. Gluten-free Lupin-based biscuits and crackers were produced by completely omitting wheat flour from the recipes.

Open access

Abstract

Wastewater issues became a complex challenge in the world. There are several methods in wastewater treatment, such as chemical, physical, biological, and the combination of each method. However, each process has advantages and disadvantages. The physicochemical methods are common methods used in wastewater treatment, such as adsorption and coagulation. Adsorption and coagulation are excellent methods to remove pollutants. The adsorption process is greatly influenced by pH, adsorbent dose, temperature, and contact time. Coagulant dose, settling time, and pH are the main factors in the coagulation process. Chemical material as an adsorbent and coagulant has been studied in previous research, but recently, to substitution chemical materials is a challenging subject. Natural substances are potential new materials in wastewater treatment and became popular due to their efficiency and environment friendly characteristics. This review investigated the role of adsorption and coagulation in wastewater treatment and the utilization of natural materials as adsorbents and coagulants.

Open access

Abstract

Built elements and structures are a prominent component of our historic gardens, both in terms of function and artistic composition and garden scenery. The surveys of historic garden structures are important research tasks, which also underpins and validates restoration work.

In most cases, the neglected state of historic gardens and sites and the unavailable archival materials do not allow an authentic restoration of historic gardens to their original state. Nevertheless, there is a real need to reconstruct our historic gardens, based not only on historical authenticity but also on a systematic reinterpretation of the relationship between society and landscape.

The objective of this article is to present a general methodology for renewal of historic gardens through examples of specific garden reconstructions. The case studies are the authors' own design works, which demonstrate the application of different design approaches, highlighting details of the reconstruction of specific built garden elements.

Open access

Abstract

A sensitive and reliable method for simultaneous determination of oryzalin and ethofumesate residues in pantnagar soil and water was validated. The compounds were extracted by LLE with dichloromethane from water, and acetone:methanol mixture from soil followed by SPE cleanup. Detection and quantification was done by RP-HPLC using mobile phase methanol:water (70:30, v/v) at 280 nm. The developed method showed satisfactory validation results with linearity (0.99), relative standard deviations (1.55 and 1.73%), and limit of quantification (0.002 μg g−1 and 0.005 μg g−1) for ethofumesate and oryzalin, respectively. Recoveries ranged for oryzalin and ethofumesate from 79.80–90.52, 75.58–86.04% (soil) and 83.50–95.92, 82.28–94.60% (water), respectively. The method could be used for routine high-throughput detection and determination of these compounds.

Open access

Abstract

Sulfacetamide sodium is a widely prescribed sulfonamide drug due to its topical antibacterial action on eye and skin. Four impurities are stated in the British Pharmacopoeia among which are sulfanilamide and dapsone. This work presents two specific, accurate and precise chromatographic methods for the simultaneous determination of a mixture of sulfacetamide sodium, sulfanilamide and dapsone. The first method is an isocratic RP-HPLC where the separation of components was achieved on C18 column. A green mobile phase was used consisting of methanol:water (60:40, v/v). The flow rate was 1.0 mL/min and effluent was monitored at 273 nm. The second method is a TLC-spectrodensitometric one where good separation was achieved by using silica plates and a mobile phase consisting of chloroform:dichloromethane:acetic acid (6:2.5:1.5, by volume). Determination was done by densitometry in the absorbance mode at 273 nm. Both methods were validated in compliance with ICH guidelines. They were also successfully applied for the determination of sulfacetamide sodium and its impurities in Ocusol® ophthalmic solutions. The obtained results were statistically compared to the results obtained by applying the official methods of analysis of each component where no significant difference was found with respect to accuracy and precision.

Open access

Abstract

In this study, a UPLC-MS/MS method was developed to measure the concentrations of the flavonoids oroxin A, oroxin B, oroxylin A, oroxyloside, chrysin, chrysin 7-O-beta-gentiobioside, and guaijaverin in the blank mouse blood, and the method was then used in the measurement of the pharmacokinetics of the compounds in mice. Oroxin A, oroxin B, oroxylin A, oroxyloside, chrysin, chrysin 7-O-beta-gentiobioside, and guaijaverin were administered intravenously at a dose of 5 mg kg−1, and the mouse blood (20 μL) was withdrawn from the caudal vein 0.08333, 0.25, 0.5, 1, 2, 4, 6, 8, and 10 h after administration. The mobile phase used for chromatographic separation by gradient elution was composed of acetonitrile and water (0.1% formic acid). The analytes were detected by operating in electrospray ionization (ESI) positive-ion mode using multiple reactions monitoring (MRM). The intra-day and inter-day accuracy ranged from 86.2 to 109.3%, the intra-day precision was less than 14%, and the inter-day precision was less than 15%. The matrix effect ranged from 85.3 to 111.3%, and the recovery of the analytes after protein precipitation were all above 78.2%. This method had the advantages of high sensitivity, accuracy, and recovery, and it had excellent selectivity, which enabled it to be applied to measuring the pharmacokinetics of the analytes in mice.

Open access
Acta Chromatographica
Authors: Bingying Hu, Yingying Sun, Min Wang, Zhisheng He, Shanshan Chen, Dake Qi, Zhen Ge, Lingling Fan, Jingfang Chen, and Yang Wei

Abstract

A reliable LC-MS/MS method for the determination of five bioactive constituents (bilobalide, BLL; ginkgolide A, GLA; ginkgolide B, GLB; ginkgolide C, GLC; rutin) of Ginkgo biloba leaf extracts (GBE) in rat plasma was established, fully validated and applied to an intragastric pharmacokinetic study of a preparation of GBE in rat. Samples were extracted with ethyl acetate. C18 column was selected as analytical column in this method. Mobile phase was water with 0.01% formic acid and acetonitrile. Quantification was performed in negative multiple-reaction monitoring mode. Matrix instability of terpene lactones was noticed and hydrochloric acid was used as a stabilizer. This method showed good precision and accuracy, recovery was reproducible and matrix effect was negligible. Among four terpene lactones, BLL had the highest exposure and the shortest terminal half-life, GLA and GLB had lower exposure and longer terminal half-life, the exposure of GLC was lowest and its terminal half-life was the maximum, and all of them showed rapid absorption. This study provides a reference for determination of terpene lactones and flavonol glycoside prototypes in GBE and offers pharmacokinetic data of flavonol glycoside prototype in GBE.

Open access

Abstract

A validated UHPLC-PDA with an ESI-MS/MS method has been developed for simultaneous estimation of six bioactive alkaloids (magnoflorine, berbamine, columbamine, jatrorrhizine, palmatine and berberine) in the different extracts of the roots of Berberis aristata DC (Family:Berberdiaceae). It is an important medicinal herb native to Northern Himalaya and commonly known as ‘daruharidra’, ‘daruhaldi’, ‘Indian barberry’ or ‘tree turmeric’. An insight into the research literature uncovered reports on isoquinoline alkaloids like magnoflorine, berbamine, columbamine, jatrorrhizine, palmatine, and berberine as major bioactives in B. aristata roots, possessing different pharmacological and therapeutic effects. In the present study, these aforementioned alkaloids were separated on Phenomenex Luna®, 5 µm-C8 analytical column. The HPLC-MS analysis was performed at a flow rate of 0.90 mL min−1. Each alkaloid that is resolved was characterized by precursor ions and fragment ions with electrospray ionization (ESI) source in both positive and negative ionization using scan mode. The limit of detections (LODs) were 0.087, 0.727, 0.035, 0.124, 0.782 and 0.794 μg mL−1 for magnoflorine, berbamine, columbamine, jatrorrhizine, palmatine and berberine, respectively. The proposed UHPLC-PDA method was fully validated according to international (ICH) guidelines and was found to be selective, sensitive and highly accurate for the concomitant estimation of the aforementioned symbolic bio-markers of B. aristata roots.

Open access

Abstract

The current study explores a design and development of the simple, fast, green and selective novel method of UPLC to quantify pitavastatin and ezetimibe simultaneously. The combined approach of Green Analytical Method with Quality by Design-based risk assessment was done using the Ishikawa fishbone diagram followed by a rotatable central composite design used for the optimization. The optimal chromatographic separation was attained through a mobile phase of 72: 28% v/v ethanol and 0.1% orthophosphoric acid (pH 3.5), with a 0.31 mL min−1 flow rate. The developed UPLC-PDA method was sensitive and specific for pitavastatin and ezetimibe, with linearity ranging from 2 to 30, 10–150 μg mL−1 with an R2 of 0.9999 and 0.9997, respectively. The forced degradation study of stability-indicating assay results shows the degradation in respective stress conditions. The developed UPLC method was validated and found to have sensible results with good linearity, accuracy and precision. Further, the greenness was evaluated using five states of art metrics like NEMI, GAPI, AES, AMGS, and AGREE metrics and found the greenest results. Based on the results we concluded that the developed UPLC method could be efficient for the simultaneous determination of pitavastatin and ezetimibe in bulk and tablet dosage.

Open access

Szélerózió okozta talaj-, humusz- és tápanyag-áthalmozás különbségeinek feltárása különböző szerkezeti adottságú csernozjom talajokon terepi szélcsatorna kísérletek alapján

Exploring the differences in soil, humus and nutrient accumulation caused by wind erosion on chernozem soils with different structural properties by field wind tunnel experiments

Agrokémia és Talajtan
Authors: Farsang Andrea, Barta Károly, Szatmári József, and Bartus Máté

Kutatásunk során Magyarország két dél-alföldi réti csernozjom talajú területét vizsgáltuk azon céllal, hogy in situ körülmények között számszerűsítsük a különböző szélesemények által okozott talajveszteség mértékét, az ezzel együtt járó humusz- és tápanyagáthalmozás nagyságrendjét, valamint a két terület defláció érzékenységében tapasztalt különbségek okait.

Vizsgálati területeink Békés megyében, Makótól K-re mintegy 10 km-re, Apátfalva külterületén, valamint Csongrád megyében Szegedtől ÉNy-ra 2 km-re helyezkedtek el. Kutatásunk célkitűzései az alábbiak voltak: terepi szélcsatornás mérésekre alapozott laboratóriumi mérések alapján különböző szerkezeti állapotú csernozjom talajokra meghatározni

  1. az indítósebességet,
  2. a szélerózióval áthalmozott szedimentben mért makroelem, és humuszanyag feldúsulását,
  3. valamint az ezekre ható talajtani tényezőket.

A hasonló mechanikai összetételű, Szeged és Apátfalva melletti réti csernozjom talajok aggregátum összetételében, valamint a CaCO3 és humusztartalomban megfigyelhető különbségek hatására a Szeged melletti csernozjom mintaterület talaja defláció érzékenyebb. A Szegedtől É-ra eső csernozjomokon 6,5–9,0 m s–1 közötti indítósebesség értékeket mértünk, míg Apátfalván 13,0 m s–1 volt az indítósebesség értéke. Az apátfalvi terület talajának magasabb karbonát- és humusztartalma, valamint aggregátum összetételében mért magasabb morzsa arány az indítósebességérték növelésének irányába hat. A feltalajban a 0,5 mm-nél kisebb aggregátumok magasabb aránya következtében nemcsak kisebb indítósebesség értékeket, hanem nagyobb áthalmozódó talajmennyiséget, valamint ezzel együtt nagyobb mennyiségű humusz- és foszfor elmozdulást mértünk az egységesen 10-10 perces fújatási kísérleteink alkalmával a szegedi mintaterületen. Megállapítható tehát, hogy egyazon talajtípusba eső, s azonos textúrájú (homokos vályog) talajok esetében az aggregátum összetételben, valamint a CaCO3 és humusztartalomban megfigyelhető eltérések hatására jelentős különbségek tapasztalhatók a defláció érzékenység, az indítósebesség, a szediment szállítás módja és a humusz- és elemáthalmozás mértéke között.

In our research, two Chernozem soil areas were examined in the southern part of the Great Hungarian Plain in order to quantify the amount of the soil loss, humus and nutrient transport caused by different wind events and in order to show the causes of the differences in the sensitivity of deflation between the two areas.

Our study areas were located in Békés County, one of them was near Apátfalva, about 10 km east of Makó, and the other one was 2 km northeast of Szeged in Csongrád County. Our in situ wind tunnel experiments were accomplished on 2–4 June 2011 at Apátfalva and in July 2013 in Szeged. The objectives of our research were the followings:

  1. determination of the enrichment ratios for humus, macro- and microelements in the wind eroded sediments in the case of Chernozem soils with different structures based on field experiments and laboratory measurements;
  2. determination the affecting actual soil factors;
  3. estimation of soil loss and element rearrangement trends on Chernozem arable lands under different wind velocity on plot scale.

Because of the differences in the aggregate size distribution, CaCO3 and humus content, Chernozem soil near Szeged is more sensitive to deflation than near Apátfalva. Threshold friction velocity was measured between 6.5 and 9.0 m s–1 near Szeged, while the same parameter was 13.0 m s–1 at Apátfalva. The higher carbonate and humus content and the higher crumb ratio of the soil on the Apátfalva area result increasing threshold friction velocity. Due to the higher proportion of aggregates smaller than 0.5 mm in the topsoil, we have measured not only lower threshold friction velocities, but also a larger quantity of transported soil and a larger humus and phosphorus loss during the uniform 10-10 minute long wind tunnel experiments in the Szeged sample area. It can be concluded that even in spite of the same soil type and same texture there are significant differences between deflation sensitivity, threshold friction velocity, sediment transport mode, humus and nutrient transportation because of the significant differences in aggregate size distribution, CaCO3 and humus content.

It means that the agronomic structure of the soils greatly influences the mitigation and aggravation of the soil the stress effects caused by climate change. Extreme weather situations have drawn attention to the fact that improperly applied cultivation methods, tools, and overuse of Chernozem soils can modify the soil structure. One of the most serious affect is the dusting of the surface layer of the soil. During this process the larger macroaggregates disintegrate into microaggregates and the resulting smaller fractions are more exposed to wind erosion.

The dust load affecting our settlements is mainly originated from arable lands. The mitigation of this emission is fundamentally based on the regulation of land use, farming practices and deflation. “Best Management Practices” (BMPs) mean a group of selected tools that can reduce or eliminate the transport of pollutants from diffuse sources before, during and/or after agricultural activities. However, these diffuse agricultural loads caused by wind erosion can only be quantified if the magnitude and spatial movement of the dust and pollutants is monitored.

Open access

Abstract

Anisodus tanguticus (Maxim.) Pascher is an important Tibetan folk medicine and the source of tropane alkaloids (TAs) grown in Qinghai-Tibet Plateau. There are marked differences in quality of A. tanguticus from geographic areas. The aim of present research was to establish a method for the quantitative analysis of TAs coupled with chemometrics analysis to trace geographical origins. Qualitative analysis of TAs in A. tanguticus was carried out using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and quantitative analysis of TAs in different plant organs from different geographical origin was achieved. Contents of TAs were subjected to the principal component analysis, and orthogonal partial least-squares discriminant analysis. The contents of the three marker compounds (anisodamine, anisodine and atropine) in the roots and acrial parts of A. tanguticus were positive correlated and varied significantly from different geographical origins. Principal component analysis, and orthogonal partial least-squares discriminant analysis results showed excellent discrimination between different geographical origin of A. tanguticus. This study could provide comprehensive evaluation and further utilization of A. tanguticus resources.

Open access

Abstract

Due to the wide applicability of separation techniques that rely on the property of differential migration in pharmaceutical formulations analysis, different analytical strategies have been proposed to resolve mixtures of multi-components pharmaceuticals. Three separation methods were developed and validated for the simultaneous determination of Paracetamol (PAR), Pseudoephedrine HCl (PSE) and Chlorpheniramine maleate (CHP). The first method is a thin-layer chromatographic (TLC) separation, followed by densitometric measurement. The separation was carried out on aluminium sheet of silica gel 60 F254 using ethanol:chloroform:ammonia (1:7:0.4, by volume) as the mobile phase. Determination of PAR, PSE and CHP was successfully applied over the concentration ranges of 3–25 µg/band, 0.5–10 µg/band and 0.1–6 µg/band, respectively. The second method is HPLC separation that was achieved on C18 column using the mobile phase acetonitrile:phosphate buffer pH 5 (10:90, v/v) at a flow rate 1 mL min−1. PAR, PSE and CHP were determined by HPLC in concentration ranges of 5–400 μg mL−1, 2–40 μg mL−1 and 0.5–16 μg mL−1, respectively. The third method is a capillary electrophoresis (CE) separation. The electrophoretic separation was achieved using 20 mM phosphate buffer (pH 6.5) at 20 kV. The linearity was reached over concentration ranges of 30–250 μg mL−1, 5–50 μg mL−1 and 0.8–20 μg mL−1 for PAR, PSE and CHP, respectively. The developed methods were validated with respect to linearity, precision, accuracy and system suitability. The proposed methods were successfully applied for bulk powder and dosage form analysis with RSD of precision <2%. Moreover, statistical comparison with the official methods confirms the methods' validity.

Open access

Abstract

The therapeutical applications of ornamental plants have been categorized to be of a great effectiveness in multiple industries from ancient times until present days. Pluchea dioscoridis is widely known Egyptian wooden plant that has been extensively applied for different medicinal purposes. In this study, LC-ESI-MS/MS analysis of the potent antimicrobial ethyl acetate and n-butanol extracts of P. dioscoridis leaves led to identification of 28 and 21 compounds, respectively. The identified compounds were categorized as phenolic acids, phenolic acids derivatives, organic acids, flavonoids (aglycones and glycosides), secoiridoids, coumarin derivatives, and gallotannins derivatives. Among them, caffeic acid 3-sulfate was the most predominate in the investigated extracts followed by ferulic acid and dicaffeoyl-quinic acid. Also, the antimicrobial potentiality of different extracts was evaluated against different pathogenic microbes including Enterobacter cloacae, Micrococcus leutus, Aeromonas hydrophila, Bacillus subtilis, Bacillus cereus, Bacillus lichneformis and Clostridium species. Furthermore, different concentrations of the most potent extract were assayed for antibacterial efficacy on growth curve kinetics against the susceptible bacteria along 4days incubation period. Our gathered data confirmed that, the antimicrobial activity against tested bacteria was different according to the solvent used in the extraction process. Mostly, all the extracts showed a wide spectrum antibacterial activity except the plant water extract which shows a mild activity against Clostridium sp. only. Based on the highest inhibition zone diameter, the ethyl acetate extract followed by butanol extract exhibited the highest inhibition zone with Micrococcus luteus and B. subtilis (20.0 and 18.5 mm) respectively. Determining the effect of ethyl acetate extract at different concentration (0, 0.66, 1.66, 3.33, 6.67, 13.34 and 20.01 mg mL−1) on M. luteus growth kinetics, the data assured that the antibacterial activity shows concentration dependent manner with the highest antibacterial activity at 20.01 mg mL−1 culture. The data also confirmed that, none of the selected concentration showed bactericidal activity in the prepared cultures, and with the prolonged incubation period the bacteria acquire resistance against the extract beginning from second or third day of incubation.

Open access

Abstract

In the case of fruit syrups, consumers prefer thicker, deep-coloured ones because they remind them of good old homemade ones. Physical properties – as viscosity, colour, refractive index, soluble solid content (SSC), and electrical impedance - of fruit syrups flavoured with raspberry or orange juice were determined. The change of the measured physical properties was determined in three different experiments: 1. evaluating the effect of sugar and sweetener content 2. evaluating the effect of fruit juice composition and 3. evaluating the effect of sugar content on syrups containing raspberry or orange juice only. Variations in fruit and sugar content had a definite effect on the physical properties of squashes. Viscosity, SSC value, refractive index, and impedance magnitude increased with increasing sugar content and decreased with replacement of sugar with sweeteners although colour characteristics were defined mostly by the colorant added to the squash. Changes in the fruit composition of syrups could influence viscosity, refractive index, and SSC values but the magnitude of impedance showed little changes for all samples. The characteristics of squashes containing only raspberry or orange juice and different sugar content did not follow any trends, which emphasized that additives had a significant effect on the physical properties.

Open access
Acta Chromatographica
Authors: Jelena Dzudovic, Milkica Crevar Sakac, Marko Antunovic, Aleksandra Repic, Slobodan Obradovic, Snezana Djordjevic, Jelena Savic, and Boris Dzudovic

Abstract

Oral anticoagulants are a group of drugs used for the prevention and treatment of venous thrombosis and venous thromboembolism. For the last ten years, direct oral anticoagulants (DOAC) have been available and are equally effective, but significantly safer than vitamin K antagonists. In the case of an overdose, their most important side effect is still bleeding. Due to their widespread use, as well as increased toxicological importance there is a need to develop an analytical method for the determination of DOAC in biological material.

The aim of this paper was to establish a method for the quantification of apixaban as one of the representatives of DOAC. The methodology of the study included the measurement of apixaban in the plasma of patients treated in the intensive care unit. Plasma apixaban concentrations were determined by LC-MS/MS technique using carbamazepine as an internal standard. Obtained validation parameters indicate that the introduced method is sensitive, reliable, precise and accurate. Using this method, apixaban can be quickly and easily detected and quantified in plasma in patients who are suspected of overdosing with this drug.

Open access

Abstract

A sweeping micellar electrokinetic chromatography (sweeping-MEKC) method was developed for the determination of 1,7-naphthalenediol, 2,3-naphthalenediol, 1,5-naphthalenediol and 2,7-naphthalenediol in cosmetics. Several parameters affecting sweeping-MEKC method were studied systematically and the separation conditions were optimized as 20 mM NaH2PO4–110 mM SDS and 40% (v/v) MeOH (pH 2.4), with −22 kV applied voltage and UV detection at 230 nm. The sample matrix is 60 mmol L−1 NaH2PO4 and sample introduction was performed at 3 psi for 6 s. Separation of the four naphthalenediols was completed in less than 17 min. Limit of detection (LOD) and limit of quantitation (LOQ) are 0.0045∼0.0094 μg mL−1 and 0.015∼0.031 μg mL−1. Linear relationship (r 2 > 0.999) is satisfactory at the range of 0.1–10 μg mL−1. The developed method has been successfully applied to the determination of the four naphthalenediols in real cosmetic samples, with recoveries in foundation, sun cream and lotion in the range of 92.3%∼106.8% and relative standard deviation (RSD) less than 4.15%. A HPLC method described in the National Standards of the People’s Republic of China was carried out for the comparison with the proposed method. The results showed that the proposed sweeping-MEKC method has the advantages of fast, low cost with comparative sensitivity.

Open access

Abstract

Napping is one of the rapid sensory profiling methods, which was established recently to meet the needs of sensory and consumer researchers. This approach provides a holistic evaluation of the tested sample through their positioning in a 2-dimensional space. The protocol of the analysis is somewhat different from the traditionally applied descriptive methods, like Quantitative Descriptive Analysis. In our review, we focus on the applicability of Napping in the field of fermented goods. The accompanying procedures are also investigated (typically Flash Profiling, CATA, and further methods), in order to understand how the combined datasets facilitate the understanding of the sensory characteristics of the products.

Open access
Progress in Agricultural Engineering Sciences
Authors: Anna Visy, Karina Ilona Hidas, Annamária Barkó, Lien Le Phuong Nguyen, László Friedrich, and Gábor Jónás

Abstract

Consuming enough protein is a very important part of a balanced and healthy diet. Complete proteins are those in which all essential amino acids are present. In meat products, like hams, many different reactions occur during ageing and storage. For example, the production of free amino acids or the production of biogenic amines is formed by decarboxylation. In this study, the presence of these amino acids and biogenic amines, as well as the quality properties of cured hams during curing and ageing, were investigated.

The meat samples were immersed into 100 g L−1 NaCl brine. The curing took 20 days, followed by smoking and ageing for 35 days (12 °C, 75% RH). The wet-cured ham samples were analysed for changes in NaCl concentration (at 3 parts: surface, core, bottom layer). Moreover, color, water activity, denaturation temperature and enthalpy (Differential Scanning Calorimetry), free amino acids (FAAs) and biogenic amines (BAs) were also evaluated.

Open access

Abstract

One of the most important components in spreads is the fat phase. The characteristics of the used fat determine most of the quality factors of the products such as viscosity, texture, colour, shelf life, etc. In these kinds of products, the commonly used fat is palm fat, however, in recent years it has had a bad press due to its negative environmental impact and health concerns. Therefore, the aim of our research was to develop a palm oil free hazelnut spread. We investigated the effect of replacing the fat in the fat phase with milk fat or coconut fat to the apparent viscosity, colour and texture properties of the product. According to our results the palm fat had the highest and coconut fat had the lowest viscosity. In texture analyses palm fat and milk fat showed no significant difference in hardness and in work of penetration. Coconut fat was significantly different in every texture attributes from the other samples. In the case of colour measurement all samples were significantly different. Despite the observed differences in some parameters the suitability of milk fat for hazelnut spread production should be further investigated (sensory analyses, shelf-life).

Open access

Abstract

In the current study, cakes were prepared with the addition of different levels of chia gel obtained by soaking 1 part of chia seeds in 9 parts of water by weight. Mix was allowed to stand for 30 min for gel formation and seeds were left in the gel and later incorporated into the batter. The addition of chia gel to cake batter to partially substitute the fat from the basic recipe (control) resulted both in improved quality characteristics at all levels of substitution and reduction of caloric value, at the expense of energy from fat, especially at higher reduction levels (40 and 60%). The fat replacement at 40 and 60% had a caloric value decrease by 48 kcal per 100 g compared to the control and respectively the energy at the expense of the fat was 37.9 and 25.7% (reduction by 71.3 and 48.3%). Sensory evaluation demonstrated good acceptability for all the products with slight prevail for the samples with 40% followed closer by those with 20% fat replacement. Hence, chia gel proved to be a good alternative for fat substitution in baking goods recipes while preserving the quality and sensory parameters aiming to produce healthier foods.

Open access

Abstract

Animal blood is a by-product, which can be utilized in a value-adding way instead of being wasted. Allergen substitution is an obvious possibility because many properties of blood plasma are similar to egg white. Techno-functional and sensory attributes (water activity, moisture content, colour and texture related properties) were measured by instrumental methods. The allergenic egg powder can be substituted by non-allergenic blood plasma powder in sponge cakes, but the change in the ingredient has an effect on hardness and tolerating compressive stress until the breaking. In the case of water activity and moisture content, sponge cakes with blood plasma were as desirable as sponge cakes with egg.

Open access

Abstract

Presented work evaluated how quality of catfish fillets is affected by treatments using lactic acid or lysozyme in combination with chlorine. Fish fillets without skin were consecutively immersed and washed in 100 ppm chlorine solution and sprayed with 2.5% lactic acid or 0.5% lysozyme solution. Control samples were only washed with water at the same time. Samples were stored at 2 °C for 10 days in vacuum packaging. Parameters of pH, firmness, surface color and microbial cell counts (cfu/g) were measured on the 1st, 4th, 7th and 10th days. Especially the latter had high importance from the point of view of food safety. Catfish fillets shown decreased survival of microorganisms as a result of treatment. Lysozyme and lactic acid achieved 1.8 and 2.4 log cfu/g reduction, respectively. Lower cell counts were observed for all treated samples compared to control during 10 days. Chlorine in combination with lactic acid achieved the best efficiency. The results are promising and suggest that combined treatment is able to improve safety by controlling microorganisms on fish fillets during cold storage.

Open access
Progress in Agricultural Engineering Sciences
Authors: Viktória Zsom-Muha, Lien Le Phuong Nguyen, László Baranyai, Géza Hitka, Zsuzsanna Horváth-Mezőfi, Gergő Szabó, and Tamás Zsom

Abstract

Among improper harvest and/or postharvest storage conditions, the effect of direct sunlight plays an important role in quality degradation of potato resulting in the development of green surface color based on chlorophyll formation associated with the formation of poisonous chemicals – glycoalcaloids – known as α-chaconine and α-solanine. Yellow skinned and fleshed potatoes with or without visible initial marks of green surface color were stored at normal room temperature under direct natural (sun)light conditions for almost two months. The aim of this study was the preliminary investigation of the sunlight induced formation of chlorophyll related compounds in potato indirectly by the detection of chlorophyll development. This attempt was based on nondestructive determination of chlorophyll related spectral and fluorescence indices for both sunlight exposed and unexposed potato sides. For both potato groups the chlorophyll content related DA-index® and chlorophyll fluorescence characteristics (F0, Fm, Fv and Fv/Fm) increased during the storage period representing chlorophyll formation. In the case of Fm, Fv and Fv/Fm values, the yellow samples reached the values of the initial spotted green samples by the 7th–9th days. From this time, the chlorophyll fluorescence values changed only minimally. After storage day 34, in the case of both at day 0 yellow and green spotted potatoes, the sunny side's F0 value was lower than that of shaded side. Close relationship was found between the results of Walz monitoring-PAM (Pulse Amplitude-Modulated) chlorophyll fluorometer and the PSI (Photon Systems Instruments) chlorophyll fluorescence imaging device (e.g. Fv R2 = 0.7226). According to our preliminary results, the Vis/NIR DA-meter®, the monitoring-PAM and the chlorophyll fluorescence imaging fluorometers were found to be suitable nondestructive devices for further investigations concerning the postharvest chlorophyll formation based greening phenomena, which is associated with solanine development in potato.

Open access
Progress in Agricultural Engineering Sciences
Authors: Mai Sao Dam, Vuong Duc Nguyen, Tamás Zsom, Lien Le Phuong Nguyen, and Géza Hitka

Abstract

The effect of storage temperature and ozone treatment on the post-harvest quality of cucumber and tomato was investigated. Cucumber and tomato were stored together with or without gaseous ozone treatment at 20 °C and 14 °C for 16 days. Firmness, color, weight loss, DA index and decay percentage of samples were evaluated during storage period. The results showed that the combination of ozone treatment and cold storage could maintain the quality of these horticultural products and decreased the decay incidence. Additionally, this combination also reduced the weight loss of samples during storage. Furthermore, ozone treatment maintained the green skin color of cucumber. No sign of chilling injury occurred during storage at 14 °C. Commodities stored with approximately 0.1 ppm gaseous ozone at 14 °C retained the firmness compared to other treatments until the end of the experiment. This study suggests a promising use of gaseous ozone treatment in storage chamber where ethylene-producing and ethylene-sensitive vegetables are stored together.

Open access

Abstract

Animal blood is a by-product, which can be utilized in a value-adding way instead of being wasted. Allergen substitution is a good possibility especially for a substance that is difficult to substitute, such as milk. Blood plasma is a fluid with high protein content without blood (iron) taste and colour, so it is similar to milk in several ways. While investigating the substitution of milk, it is advisable to investigate the substitution of sugar as well because a lot of consumers who exclude milk from their diet find the glycaemic index and energy content of foods important. The investigated model food is a simple, homogeneous matrix: vanilla custard with milk and with and without sugar and vanilla custard with blood plasma and with and without sugar. Colour, pH and rheological attributes of custard sample groups were measured. According to the results the used protein source as well as sweetener significantly determine the colour, pH and texture of the final product. However, colour and pH are easy to change with other components (food colours, acidity regulators) and the effect of milk and sugar substitution on rheological attributes might not be possible to detect without instrumental analysis.

Open access
Progress in Agricultural Engineering Sciences
Authors: E. Somogyi, Á. Kun, J. Lázár, P. Bodor-Pesti, and D. Á. Nyitrainé Sárdy

Abstract

Quantitative evaluation of the horticultural crops has high importance to identify cultivars, describe the effect of the growing location and cultivation technology or define consumer's preference regarding the size and shape. Fruit traits of the grapevine (Vitis vinifera L.) are mainly described by the bunch and berry morphology notably bunch and berry size, weight and shape. Ampelographers particularly evaluate the berry based on the seed number as it influences size and consumers' decision. In this study, berry morphological traits of the grapevine cultivar ‘Italia’ was investigated based on digital image analysis. Samples were collected from two vineyards in Hungary with different ecological and cultivation circumstances. Altogether 12 traits were investigated: weight, seed number, size and shape attributes. Results showed that berry morphological traits – except from the shape attributes – are not differing between the two sampling locations. In accordance with previous studies, seed number – ranging from 0 to 4 – had noticeable effect on the size attributes.

Open access
Progress in Agricultural Engineering Sciences
Authors: Anikó Kovács, Raul Kolinka, Györgyné Kóczán, and Zoltán Kókai

Abstract

The population of gluten sensitive people has been gradually rising in the last decades. The food industry, especially the bakery industry has to develop more gluten-free products to satisfy the consumer's demand. However, the quality of these products differs from the quality attributes of a standard glutenious bakery product. Therefore, the aim of our research was to develop a good quality gluten-free sourdough product with 3 different gluten-free flours: millet, brown rice and a commercially available mixture (Belbake). We investigated the differences in moisture content, the baking loss, the texture and the sensory properties of the products. According to our results in the case of the moisture content the brown rice sample had the highest, while the millet gave the lowest value. The baking loss measurement gave reverse results. In the texture analysis the brown rice sample was the softest, but the millet and the Belbake had better results in resilience and in springiness. Also, in the sensory analyses the Belbake product was found to be the best by the judges, however, there were no significant differences between them. In conclusion, the product development of a gluten-free sourdough bakery product was successful. Further research is needed to investigate the shelf life of the products.

Open access

Abstract

Two sensitive and effective methods were developed for the detection of catecholamines and related biogenic amines (dopamine, epinephrine, norepinephrine, serotonin, levodopa and tyramine) using high performance liquid chromatography with fluorescence detection and capillary electrophoresis with laser-induced fluorescence detection. A BODIPY fluorescent dye, 1, 3, 5, 7-tetramethyl-8-(N-hydroxysuccinimidyl propionic ester)-difluoroboradiaza- s-indacene was used as pre-column derivatization reagent. The separation and derivatization conditions were optimized in detail. In high performance liquid chromatography with fluorescence detection method, the derivatization reaction was completed at 35 °C for 20 min. At the wavelength of λ ex/λ em = 493 nm/513 nm, dopamine, epinephrine, norepinephrine, and levodopa derivatives achieved baseline separation within 15 min. The limits of detection (S/N = 3) were 1.0, 2.0, 5.0, and 0.5 nmol/L, respectively. In capillary electrophoresis with laser-induced fluorescence detection method, the derivatization reaction was completed at 25 °C for 20 min. Serotonin, tyramine and dopamine derivatives reached baseline separation within 10 min at the wavelength of λ ex = 473 nm. The limits of detection (S/N = 3) for serotonin, tyramine, and dopamine were 0.3, 0.02, and 0.2 nmol/L, respectively. The amino compounds in human serum and urine samples were detected successfully, and the recoveries were 93.3%–106.7% and 91.0%–103.1%, respectively.

Open access

Abstract

Sous-vide treatment is a modern minimal processing cooking technique that uses a single-step temperature of 55–70 °C and longer time. The quality attributes of meat might be improved by including cooking steps at below 50 °C temperatures in the sous-vide treatment. The aim of this study was to investigate the effects of the double-step sous-vide treatments on the quality attributes of the chicken breast and comparing with the traditional single-step sous-vide treatments. The single-step sous-vide treatments were performed at 60 °C. In the double-step sous-vide treatments the first step temperature was 45 °C and the end temperature was 60 °C. Double-step sous-vide treated chicken breasts obtained higher tenderness, moisture content and lower weight loss compared to the single-step sous-vide treated chicken breasts. Double-step sous-vide treatment provided an attractive cooking method to produce high quality chicken breast, however, challenge tests for specific pathogens would be useful for the assessment of the microbiological quality for different treatment combinations.

Open access

Abstract

Apple pomace contains a large amount of useful bioactive compounds that have wide application in the food industry. In this study the effect of drying temperature and pressure (high temperature 80 °C and low temperature 60 °C using a conventional oven and a combination of conventional plus vacuum drying oven) on the antioxidant capacity and phenolic compounds of apple pomace extract was investigated. For a combination of conventional and vacuum drying ovens, samples were first dried by a conventional oven to a moisture content of approximately 10% then vacuum dried to reach a final moisture content of 3–4%. After the drying processes, ethanolic extraction was performed and the amount of total polyphenol and the antioxidant capacity (FRAP) were evaluated to determine a best drying method. The drying curves were also determined. The drying temperature affects the duration of the drying, the rate of water loss, and the remaining amount of antioxidant compounds.

Open access

Abstract

Pyrazinamide (PZA), a medication for tuberculosis, has high aqueous solubility and low permeability, undergoes extensive liver metabolism, and exhibits liver toxicity through its metabolites. To avoid this, PZA in lipid core-shell nanoarchitectonics has been formulated to target lymphatic uptake and provide metabolic stability to the incorporated drug. The UPLC-MS/MS method for reliable in vitro quantitative analysis of pyrazinamide (PZA) in lipid core-shell nanoarchitectonics as per ICH guidance was developed and validated using the HILIC column. The developed UPLC-MS/MS method is a simple, precise, accurate, reproducible, and sensitive method for the estimation of PZA in PZA-loaded lipid core-shell nanoarchitectonics for the in vitro determination of % entrapment efficiency, % loading of pyrazinamide, and microsomal stability of lipid core-shell nanoarchitectonics in human liver microsomes. The % entrapment efficiency was found to be 42.72% (±12.60). Lipid nanoarchitectonics was found to be stable in human liver microsomes, where %QH was found to be 6.20%, that is, low clearance. Thus, this formulation is suitable for preventing PZA-mediated extensive liver metabolism. These findings are relevant for the development of other lipid-mediated, suitable, stable nanoformulations containing PZA through various in vitro methods.

Open access

Abstract

In this paper, thermal degradation (TGA) and pyrolysis studies of sunflower shell biomass (SSB), eucalyptus biomass (EB), wheat straw biomass (WSB), and peanut shell biomass (PSB) were carried out using the thermogravimetric analysis and stainless steel tubular reactor. Thermal degradation of all biomass wastes was examined at a heating rate of 10 °C/min in nitrogen atmosphere between 20 and 800 °C. Experiments of pyrolysis were carried out in a tubular reactor from 300 to 700 °C with a heating rate of 10 °C/min, a particle size of 0.1–0.3 mm and nitrogen flow rate of 100 mL.min−1, which the aim to study how temperature affects liquid, solid, and gas products. The results of this work showed that three stages have been identified in the thermal decomposition of SSB, EB, WSB, and PSB wastes. The first stage occurred at 120–158 °C, the second stage, which corresponds to hemicellulose and cellulose's degradation, occurred in temperatures range from 139 to 480 °C for hemicellulose, and from 233 to 412 °C for cellulose, while the third stage occurred at 534–720 °C. It was concluded that temperature has a significant effect on product yields. The maximum of bio-oil yields of 37.55, 30.5, 46.96, and 50.05 wt% for WSB, PSB, SSB, and EB, were obtained at pyrolysis temperature of 500 °C (SSB, PSB, and WSB) and 550 °C (EB). Raw biomass, solid and liquid products obtained were characterized by elemental analysis, Fourier transformed infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and x-ray diffraction (XRD). The analysis of solid and liquid products showed that bio-oils and bio-chars from agricultural biomass wastes could be prospective sources of renewable fuels production and value added chemical products.

Open access

Abstract

The local food concept is analysed from a supply chain perspective and its positive environmental effects. Revitalised local economies, reduced greenhouse emissions, preservation of farmland and rural lifestyles associated with local products impacts consumer preferences by reflecting a positive attitude toward locally grown products. In addition, the health benefits of local products are more frequently evoked by consumers than those of organic-local products. However, the labelling of such products is used despite consumers and/or producers not being clear about the attributes conferred by the product locality. In this context, this paper aims to clarify the perception of Albanian consumers regarding local fruit and vegetables. The results show that the positive WTP for local food relies on the consumer concern about health and environmental issues. In the case of Albanian consumers, this is driven more by health, taste and environment. Surprisingly, environmental concern exceeds other attributes like price and origin. In this case, environmental issue overlaps health, and it is used as a surrogate indicator for the latter. This is due to the lack of trust in public authorities that fail to assure an efficient quality control process in the agriculture and food sector.

Open access

Abstract

In the last decade, bread consumption was decreasing in Hungary (from 44.5 kg to 34.4 kg/capita). Our aim is to identify the factors influencing the consumption of different bread and bakery products, using the Food Choice Questionnaire (FCQ).

FCQ is frequently used to explore factors (e.g., price, packaging, etc.) influencing the purchase of different food products. The adapted version of the FCQ for breads and bakery products is not yet available in Hungarian language. Word association (WA) and triangulation methods are usually used in the adaptation process.

Due to COVID-19, WA method was performed with a newly developed application presenting six photos of breads. This was completed by 193 participants. Responses were analysed using a categorizing triangulation technique, based on which the FCQ was modified.

In this study, we present the implementation and the results of the digitalized WA method and its use in the adaptation process of the FCQ.

Open access

Abstract

A sensitive and rapid method using HPLC-MS/MS was developed for the determination of eight glucocorticoids residues in chicken muscle simultaneously by Turbo Flow. The eight glucocorticoids were prednisone, prednisolone, hydrocortisone, methylprednisolone, dexamethasone, betamethasone, beclomethasone and fludrocortisones. Samples were extracted with ethyl acetate and on-line cleaned up through a Turbo Flow solid-phase extraction column without time-consuming pretreatment before HPLC-MS/MS analysis. Sample pretreatment conditions, Turbo Flow conditions and mass spectral parameters were optimized and obtained eight glucocorticoids calibration curves. These curves showed good linearity over the concentration from 0.2 μg/kg to 50 μg/kg with an average recovery from 71.63% to 117.36%. This method could be applied on real samples and provided simple, rapid, sensitive and highly selective analysis, which made it feasible to be adopted in food inspection organizations or carry out quantitative analysis for other banned substance.

Open access

Abstract

The quality of pesticide formulations has an impact on the crop safety, environment and human health. Therefore, the development of new analytical methods for the determination of active substances in pesticide formulations in order to control their quality, as well as, their residues in food samples in order to ensure food safety, is always welcome. A new, simple, precise and accurate normal-phase high-performance liquid chromatography (NP-HPLC) method for determination of an active ingredient malathion in the commercial emulsifiable concentrate pesticide product has been developed and validated. The analysis was carried out on a LiChrosorb CN (250 x 4 mm, 5 μm) analytical column using isocratic elution with mobile phase consisted of n-hexane and dichloromethane (80/20, v/v), flow rate of 1 mL/min, constant column temperature at 25 °C and ultraviolet diode-array detection at 220 nm. The obtained values for multiple correlation coefficients (R 2 ≥ 0.9990), relative standard deviation of retention times, peak areas and heights (RSD ≤ 1.14%), recoveries ranged from 98.97 to 101.62%, revealed that the developed method has a satisfactory linearity, precision and accuracy. Also, the developed method was successfully applied for determination of malathion residues in apple juice samples, after preliminary sample preparation using solid-phase extraction. Specificity, selectivity, linearity, matrix effect, precision and accuracy were tested in order to validation of this method. The obtained results were in acceptable ranges and indicated that the developed method is suitable for routine determination of malathion in the pesticide formulation, as well as for determination of malathion residues in apple juice samples. The run time of HPLC analysis was about 6 min.

Open access
Progress in Agricultural Engineering Sciences
Authors: Karina Ilona Hidas, Csaba Németh, Lien Phuong Le Nguyen, Anna Visy, Adrienn Tóth, László Friedrich, and Ildikó Csilla Nyulas-Zeke

Abstract

Freezing can enhance the storage time of liquid egg products, but egg yolk undergoes an irreversible textural and structural change when it is cooled to –6 °C. In this study, the effects of different salt concentrations on the physical properties of frozen-thawed egg yolk were investigated.

The pasteurised liquid egg yolk (LEY) was treated with 4, 5, and 6% of NaCl before freezing and it was stored at –18 °C for 4 weeks. The colour, pH, and rheological characteristics (firmness, consistency, cohesiveness, and index of viscosity) of yolk samples were evaluated before and after freezing.

Salt treatment resulted in preventing gelation, with decreasing firmness, consistency and viscosity compared to control samples. The pH of all yolk samples increased during frozen storage. The lightness value decreased in treated samples and increased in the control sample after freezing.

The results indicated that the applied salt concentrations could inhibit protein aggregation of LEY induced by freezing during the storage period. At least 5% salt concentration could reduce effectively the changes in rheological properties.

Open access

Abstract

Tectorigenin, tectoridin, irigenin, and iridin are the four most predominant compounds present in She Gan. She Gan has been used in traditional Chinese medicine because of its anti-inflammatory, hepatoprotective, anti-tumor, antioxidant, phytoestrogen-like properties. In this paper, a UPLC-MS/MS method was developed to measure the pharmacokinetics of tectorigenin, tectoridin, irigenin, iridin after intravenous administration in mice. A UPLC BEH C18 (50 mm × 2.1 mm, 1.7 μm particle size) chromatographic column was utilized for separation of the four target analytes and internal standard (IS), and the analysis of blood plasma samples; the mobile phase consisted of an acetonitrile-water (w/0.1% formic acid) gradient elution. Electron spray ionization (ESI) positive-ion mode and multiple reaction monitoring (MRM) mode was used for quantitative analysis of the analytes and internal standard. The four compounds were administered intravenously (sublingual) at doses of 5 mg/kg. After blood sampling, samples were processed and then analyzed by UPLC-MS/MS. The linearity of the method was robust over the concentration range of 2–5,000 ng/mL. The intra-day precision of the analysis was within 15%, the inter-day precision was within 12%, and the accuracy was between 92% and 110%. The recoveries were 65–68%, and the matrix effect was 93–109%. The established UPLC-MS/MS detection method was then successfully applied to study the pharmacokinetics of tectorigenin, tectoridin, irigenin, iridin in mice.

Open access
Restricted access
Progress in Agricultural Engineering Sciences
Authors: Dávid Nagy, Viktória Zsom-Muha, Csaba Németh, and József Felföldi

Abstract

The aim of this study was to determine the effect of ultrasound treatment on foaming properties of egg white. The samples were sonicated at 20/40 kHz and 180/300 W equipment power (3.7/6.9 W absorbed power) for 30, 45 and 60 minutes. Foam capacity had been increased by 25% due to sonication at 40 kHz and 6.9 W absorbed power for 60 minutes. This phenomenon may be caused by the homogenization effect of ultrasound and protein exposure of hydrophobic groups that improve the adsorption of protein onto the air/water interfacial molecules. It is found that frequency and duration of the treatment have no significant impact on the changes in foam capacity, only the absorbed power. On the other hand, foam stability had been decreased during the ultrasonic treatment. We can assume that sonication decreases the potential difference between the dispersed particles and the dispersion medium and this may be the cause of the collapse of the foam structure due to ultrasound treatment. In this case frequency, treatment time, and the absorbed power had a significant effect on the stability.

Open access

Abstract

A fast LC-APCI-MS/MS screening/confirmation method was developed and validated for trace analyses of 18 analytes which are explosives and organic gun shot residues including the challenging ones with diverse ionization conditions, in soil and on hands. (+) and (−) ionization modes were used after a single-step, low-volume solvent extraction procedure developed using methanol. Tape-lifting, stub, alcohol wipes, cotton bud were compared for collecting the residues from hands of a shooter. Tape-lifting and stub gave the highest recoveries and tape-lifting was chosen. Gradient elution system using ammonium chloride:methanol was developed. Whole procedure lasted approximately 30 min, was validated in both matrices, applied to real samples as post-blast residues, smokeless powder and the hands of a shooter, after shooting. Most of the recoveries were >80% and since all the precisions were <15%, quantitation was possible for all. Limit of Detection (LOD) and Limit of Quantification (LOQ) values were: 0.2–54.1 and 0.3–190.0 ngg−1 in soil, and 0.2–132.3 and 1.1–355.0 ngg−1 in tape-lift.

Open access

Abstract

A simple HPLC-UV procedure is described in our paper which is suitable for the rapid and cost-efficient determination of prochloraz in mushrooms. Prochloraz is the only fungicide in EU which use is allowed in mushroom production. The aim of our work was the development of a simple method that is suitable for the control of this pesticide in everyday analyses during mushroom production. The procedure involves a simple sample preparation method based on solid-liquid extraction (modified QuEChERS extraction method EN 15662) followed by an HPLC-UV determination (recovery: 97–99%; limit of detection LOD: 0.01 mg/kg; limit of quantification LOQ: 0.05 mg/kg).

Open access

Néhány potenciálisan mérgező fém frakcióinak meghatározására alkalmazott analitikai módszer értékelése eltérő fizikai talajféleségű mintákon

Evaluation of analytical methods for the determination of different potentially toxic metal fractions in soils with different physical properties

Agrokémia és Talajtan
Authors: Kovács Katalin, Horváth Márk, Halász Gábor, Takács Anita, Heltai György, Boros Norbert, Sipos Péter, and Győri Zoltán

Munkánk során potenciálisan toxikus fémek frakcióinak meghatározására alkalmazott analitikai módszereket kívántunk értékelni, azok talajféleségtől való függése alapján.

A talajféleségtől való függés mértéke döntően megszabja a módszer használhatóságát. Jelen dolgozat célja, hogy a Cu, a Zn, a Fe és a Ni környezeti mobilitása szempontjából értékelje a vizsgálatba vont egy- és többlépéses kioldásos módszereket.

Vizsgálatainkhoz a TIM adatbázisból származó négy, eltérő fizikai talajféleségű mintát választottunk (homok-, homokos vályog-, vályog- és agyag-talaj sorrendjében növekvő agyag- és humusztartalommal és pH-val).

Öt különböző kivonószerrel végzett egylépéses extrakciót és kétféle szekvens, azaz 3+1 lépéses egymás utáni extrakciós vizsgálatot végeztünk (BCR és McGrath módszerekkel).

Elvégeztük a minták Magyar Szabvány (MSZ 21470-50) szerinti, mikrohullámú kezeléssel egybekötött, H2O2+HNO3 eleggyel való roncsolását is. Az így megállapított elemtartalom környezetvédelmi szempontból teljes („összes”) elemtartalomnak tekinthető.

A mérési eredmények alapján megkíséreltük kiválasztani a vizsgálatba vont módszerek közül azokat, amelyek a talajból már biztonsággal meghatározható mennyiségű elemet vonnak ki, de a kivont mennyiség még nem a teljes elemtartalommal arányos.

A mikrohullámú feltárással kapott Zn-, Cu-, Fe- és Ni-tartalmak, a homok-, homokos vályog-, vályog- és agyag-talaj sorrendben, vagyis az agyag- és humusztartalmukkal, valamint pH-jukkal párhuzamosan nő. Egy olyan összetett rendszerben, mint a talaj, az egyes talajtulajdonságok, így az agyag- és humusztartalom, valamint a pH hatása vizsgálataink alapján nem különíthető el, de mint várható volt, a nagyobb agyag- és humusztartalmú és magasabb pH-jú talajok ezekből az elemekből többet halmoztak fel.

Mivel a kelátképzőket tartalmazó kivonószerek az összes réztartalomnak mintegy harmadát kivonták, a kivont mennyiség a réztartalommal volt arányos, vagyis a réztartalom növekedésével párhuzamosan nőtt.

Ezek a kivonószerek tehát Cu esetében kevésbé alkalmasak az egyes talajféleségek toxicitása közti különbségek kimutatására.

A rézzel ellentétben, a másik három elemnél az egyes talajféleségeknél kivont kis elemmennyiségek esetenként nagyságrendileg is különböztek, így az elméleti meggondolásunknak megfelelően feltételezhető, hogy az egyes talajféleségek toxicitása közti különbséget mutatják.

A két szekvens módszernél a vasnál kapott mérési eredményeket azok szórása miatt nem lehetett értékelni.

Megállapítható, hogy a BCR agresszívebb kivonószereket használ, mint a McGrath módszer, ennek megfelelően a BCR módszerrel a talajok átlagában az elemek 36, a McGrath módszerrel pedig csak 9%-át vontuk ki.

A BCR módszernél nincs vízszerű gyenge kivonószer, amiből a különböző talajok összes elemtartalmából felszabaduló ionok mennyiségére lehetne következtetni. Az ecetsav, a leggyengébb kivonószer, de a kicserélhető elemtartalom mellett kivonja a karbonátokhoz kötött, vagyis biztosan nem szabad ionos elemtartalmat is.

Mivel a BCR módszer minden kivonószerével sok elemet vonunk ki, nincs érdemi különbség az elemek egyes talajoknál mért kivonási százaléka között, ami figyelembe véve, hogy a talajok elemtartalma a homoktól az agyagtalajig nő, azt jelenti, hogy a kivont mennyiség az összes elemtartalommal arányos.

Lényegében ugyanezt mondhatjuk a McGrath módszer két agresszívebb kivonószeréről is, annak ellenére, hogy lényegesen kevesebb elemet vonnak ki. Ezzel szemben a módszer leírása szerint, a 0,1 mólos kalcium-kloridos kivonatból a vízoldható és kicserélhető elemtartalomra lehet következtetni, így minden bizonnyal a talajok toxicitását mutatja.

In this study, we aimed to evaluate some analytical methods used to determine the fractions of potentially toxic metals, based on their dependence on soil type.

The degree of dependence on soil type determines the applicability of the method. The aim of the present paper is to evaluate the single- and multi-step extraction methods included in the study in terms of the environmental mobility of Cu, Zn, Fe and Ni.

For the studies, we selected four samples with different physical soil types from the Soil Information and Monitoring System database.

In order to establish trends, soil samples were selected so that their clay and humus content, i.e., their adsorption capacity as well as their pH increased in the order of sand, sandy loam, loam and clay soils.

One-step extractions with five different extractants and two sequential extraction analyses including 3+1 steps were performed (BCR and McGrath methods).

We also performed the digestion of the samples with H2O2 + HNO3 solvent combined with microwave treatment according to the Hungarian Standard (MSZ 21470-50). The element content determined in this way can be considered as the "total" element content from the environmental point of view.

Based on the results of the analyses, we tried to select from the methods included in the study those that already extract a safe amount of elements from the soil, but the extracted amount is not yet proportional to the total element content.

The Zn, Cu, Fe and Ni contents resulting from microwave digestion increased in the order of sand, sandy loam, loam and clay soils, i.e. in parallel with the clay and humus content and pH of the soils.

As the extractants containing chelating agents extracted about one-third of the total copper content, the amount extracted was proportional to the copper content, i.e. it increased in parallel with the increase in copper content. Thus, in the case of copper, these extractants are less suitable for detecting differences in the toxicity of different soil types.

In contrast to copper, in the case of the other three elements, the small amounts extracted from each soil type also differed in order of magnitude, so according to our theoretical consideration, it can be assumed that they show a difference between the toxicity of each soil type.

The results obtained with iron using the two sequential methods could not be evaluated due to their standard deviation.

It can be stated that BCR uses more aggressive extractants than the McGrath method, accordingly, the BCR method extracted 36%, whereas the McGrath method only 9% of the elements on average of the soils.

The BCR method does not have an aqueous weak extractant, which would indicate the amount of ions released from the total element content of the different soils. Acetic acid is the weakest extractant, but in addition to the exchangeable element content, it also extracts the ionic element content bound to carbonates, which is certainly not free.

Because a large amount of elements is extracted with each extractant in the BCR method, there is no significant difference in the percentage of elements extracted for each soil, which, given that soil element content increases from sand to clay soil, means that the extracted amount is proportional to total element content.

Basically, the same can be said for the two more aggressive extractants of the McGrath method, despite the fact that they extract significantly less amount of elements. In contrast, as described in the method, the water-soluble and exchangeable element content can be inferred from the 0.1 M calcium chloride extract, thus it certainly indicates soil toxicity.

Open access

Abstract

Eugenitin is a non-volatile chromone derivative which is always found in dried flower buds of Syzygium aromaticum L. (Merr.) & L.M. Perry. Until now, there were no reports about the pharmacokinetics of eugenitin in biological fluids. A UPLC-MS/MS method developed to determine eugenitin in mouse blood. The blood samples were prepared by protein precipitation with acetonitrile. Chrysin (internal standard, IS) and eugenitin were gradient eluted by mobile phase of acetonitrile and water (0.1% formic acid) in a BEH C18 column. The multiple reaction monitoring (MRM) of m/z 221.1→206.0 for eugenitin and m/z 255.1→152.9 for IS with an electrospray ionization (ESI) source was used for quantitative detection. The calibration curve ranged from 0.5 to 500 ng/mL (r > 0.995). The accuracy ranged from 98 to 113%, the precision was less than 12%, and the matrix effect was between 86 and 94%, the recovery was better than 81%. The developed method was successfully used for pharmacokinetics of eugenitin in mice after intravenous (5 mg/kg) and oral (20 mg/kg) administration, and the absolute availability of eugenitin was 12%.

Open access

Abstract

Ketorolac (Ket) is a potent non-narcotic analgesic drug (among the nonsteroidal anti-inflammatory drugs). The physiological activity of Ket resides with (S)-(−)-Ket while the drug is marketed and administered as a racemic mixture. Therefore, it is desirable that the pharmacokinetics is measured and quantified for enantiomers individually and not as a total drug. The present paper is focused on relevant literature on LC enantioseparation of (RS)-Ket along with bioassay, pharmacokinetic and clinical studies within the discipline of analytical chemistry. HPLC and Thin layer chromatography (TLC) methods using both direct and indirect approaches are discussed. The methods provide chirality recognition even in the absence of pure enantiomers. Besides, a brief discussion on resolution by crystallization and enzymatic methods is included. The most interesting aspects include establishment of structure and molecular asymmetry of diastereomeric derivatives using LC-MS, proton nuclear magnetic resonance spectrometry, and by drawing conformations in three dimensional views by using certain software. A brief discussion has also been provided on the recovery of native enantiomers by TLC.

Open access

Abstract

Oseltamivir is an antiviral drug and is used in the treatment of all influenza viruses. It is the most effective antiviral option against all influenza viruses that can infect humans. UV and LC methods have been developed and validated according to ICH guidelines for various parameters like selectivity, linearity, accuracy, precision, LOD and LOQ, robustness for the quantitative determination of oseltamivir in pharmaceutical formulations. LC method has been performed using reverse phase technique on a C-18 column with a mobile phase consisting of 20 mM potassium dihydrogen phosphate solution and acetonitrile (60:40, v/v) at 25 °C. The mobile phase flow rate was 1.2 mL min−1. For the determination of oseltamivir, UV spectrum has been recorded between 200 and 800 nm using methanol as solvent and the wavelength of 215 nm has been selected. Both methods have demonstrated good linearity, precision and recovery. No spectral and chromatographic interferences from the capsule excipients were found in UV and LC methods. In both methods, correlation coefficients were greater than 0.999 within a concentration range of 10–60 mg mL−1 using UV and LC. Intra-day and inter-day precision with low relative standard deviation values were observed. The accuracy of these methods was within the range 99.85–100.17% for LC and from 99.26 to 100.70% for UV. Therefore UV and LC methods gave the most reliable outcomes for the determination of oseltamivir in pharmaceutical formulation.

Open access