Browse Our Earth and Environmental Sciences Journals

Earth and environmental sciences cover all planetary and Earth science aspects, including solid Earth processes, development of Earth, environmental issues, ecology, marine and freshwater systems, as well as the human interaction with these systems.

Earth and Environmental Sciences

You are looking at 211 - 220 of 1,546 items for

  • Refine by Access: All Content x
Clear All

Anisian Muschelkalk carbonates of the southern Germanic Basin containing silicified ooidal grainstone are interpreted as evidence of changing pH conditions triggered by increased bioproductivity (marine phytoplankton) and terrestrial input of plant debris during maximum flooding. Three distinct stages of calcite ooid replacement by silica were detected. Stage 1 reflects authigenic quartz development during the growth of the ooids, suggesting a change in the pH–temperature regime of the depositional environment. Stages 2 and 3 are found in silica-rich domains. The composition of silica-rich ooids shows significant Al2O3 and SrO but no FeO and MnO, indicating that late diagenetic alteration was minor. Silicified interparticle pore space is characterized by excellent preservation of marine prasinophytes; palynological slides show high abundance of terrestrial phytoclasts. The implications of our findings for basin dynamics reach from paleogeography to cyclostratigraphy and sequence stratigraphy, since changes in the seawater chemistry and sedimentary organic matter distribution reflect both the marine conditions as well as the hinterland. Basin interior changes might overprint the influence of the Tethys Ocean through the eastern and western gate areas. Stratigraphically, such changes might enhance marine flooding signals. Ongoing research needs to address the complex interaction between an intracratonic basin and an open-ocean system by comparing local and regional biotic and abiotic signals.

Open access
Central European Geology
Authors:
István Vető
,
Katalin Báldi
,
Stjepan Ćorić
,
Magdolna Hetényi
,
Attila Demény
, and
István Futó

This study is intended to clarify the depositional environment of a 180-m-thick, immature, limy Middle Miocene oil source rock interval, cored in the Zala Basin, western Hungary. For this purpose, a highly interdisciplinary approach was applied combining simple, standard micropaleontological, isotopic, and organic geochemical methods, rarely applied together. Foraminifera were studied for estimating bottom oxygenation and water depth, while nannoplankton biostratigraphy permitted for estimating the rate of sedimentation. The studied source rocks were deposited in a rather shallow sea, below well-oxygenated bottom water. The abundant epiphytic foraminiferal fauna proves that the bottom was densely inhabited by benthic algae, while the high δ13Corg (>–22‰) clearly indicates massive benthic algal contribution to the kerogen. Mass accumulation rate of the limy upper part of the NN5 nannoplankton biozone, the oil source interval included, was very high (551 t/m2/Ma). In spite of moderate productivity and good oxygenation of the bottom, rapid accumulation of carbonate, produced partly by benthic algae, assured both the great relative weight of the marine organic components and their good preservation. Our results provide the first proof for the possibility of a major contribution of benthic algae to oil-prone kerogen.

Open access

The pre-Cenozoic basement of central Hungary is partly made up of different types of carbonate rocks. These carbonates are often good hydrocarbon reservoirs, and hydrocarbon production is significant in this region in Hungary. Nonetheless, the petrography of the reservoir rocks has not yet been investigated in detail. In this study, the results of the investigations of the lithology of a carbonate hydrocarbon reservoir from central Hungary (Gomba Field) are presented. Based on this work, two types of pure limestone, a dolomitic limestone and a polymictic breccia, could be distinguished in the study area. The limestone types are similar to the Kisfennsík Limestone Member and the Berva Limestone of the Bükk Mountains, but they contain significant amounts of framboidal pyrite and dead oil as vein fillings. The breccia is predominantly composed of angular carbonate clasts and minor metamorphic and sedimentary rock fragments in a chaotic pattern. The breccia has some grains that may be speleothems (e.g., stalactite or stalagmite) based on their structure and isotopic compositions. The fabric of the breccia suggests that it may have been formed by fluid-related processes. Cross-cutting relationships of the veins and petrography of the vein fillings suggest that there are four different fracture generations and two different hydrocarbon migration phases to be distinguished. The composition of the hydrocarbon-bearing fluid inclusions related to the second migration event is similar to the crude oil currently produced from the Gomba Field. During the Eocene, the Triassic basement was buried and brecciated. Subsequently, a primary hydrocarbon migration can be assumed, but the hydrocarbons became overmature, apparently due to the high temperatures of the burial environment. Finally, an uplift phase began and the youngest fracture generation formed, which serves as a primary pathway for the more recent hydrocarbon migration.

Open access

Mantle peridotites are interpreted as either residues after partial melting and melt extraction or products of igneous refertilization of refractory peridotites. The simple distinction between these models is difficult to assess because in chemical variation diagrams, both processes lead essentially to the same results. The only exception is the Ti-in-Cpx versus Ti-in-whole-rock plots, which can successfully discriminate between these models. In this study, a modified version of Ti-in-Cpx versus Mg#-in-olivine plots was applied to ∼1,500 spinel peridotite xenoliths from worldwide localities. The results showed that the vast majority of shallow mantle samples are consistent with the partial melting model; however, a minority of samples may indicate refertilization of formerly refractory mantle domains.

Open access

The Zagros Orogenic Belt includes the Fold and Thrust Belt, the High Zagros Belt, the Outer Zagros Ophiolitic Belt, the Sanandaj–Sirjan Metamorphic Belt, the Inner Zagros Ophiolitic Belt, and the Urumieh–Dokhtar Magmatic Belt. We divide the High Zagros evolutionary history into five stages: (1) triple junction formation, (2) continental lithosphere rifting, (3) generation, spreading, and maturation of the Neotethys Ocean, (4) subduction of the oceanic lithosphere, and (5) collision. The Neotethys triple junction, located at the southeastern corner of the Arabian Plate, formed during the Late Silurian–Early Carboniferous. Subsequently, this triple junction became a rift basin due to normal faulting and basalt eruption. The rifting stage occurred during the Late Carboniferous–Early Permian. Thereafter, extension of the basin continued, leading to spreading and maturation of the Neotethys oceanic basin during the Late Permian–Late Triassic. Probably at the end of the Late Triassic, closure of the Paleotethys Basin caused the initiation of two northeastward subductions: (1) oceanic–oceanic and (2) oceanic–continental. Oceanic–oceanic subduction continued until the Late Cretaceous and was terminated by the emplacement of the Outer Zagros Ophiolites, whereas oceanic–continental subduction continued until the Middle Miocene. Subduction in the southern Neotethys Basin between the Arabian and Central Iran Plates caused a tensional regime between Sanandaj–Sirjan and Central Iran, and the formation of a back-arc basin that by its closing led to the emplacement of the Inner Zagros Ophiolites during the Late Cretaceous.

Open access

A 2016. évi Talajtani Vándorgyűlés

(Debrecen, 2016. szeptember 1–3.)

Agrokémia és Talajtan
Authors:
János Kátai
and
Erika Michéli
Restricted access

A kunhalmok az eurázsiai sztyeppe öv síkvidéki tájának emberalkotta formakincsei. A halmok építésekor az azt létrehozó ember eltemette és ezáltal konzerválta a korabeli táj egyik legfontosabb “olvasókönyvét”, a járószint talajtakaróját. Az egykori tudatos emberi cselekvés — azaz különböző céllal létesített halmok megépítésének — kiemelten fontos mellékterméke, hogy a halmok alatti terület korabeli talajtakarója izolálódott a környezeti hatásoktól és ezáltal megőrződött.

Tanulmányunkban a Szolnok-Túri-síkon található Bán-halmon végzett geomorfológiai, botanikai, talaj- és rétegtani eredményeket foglaljuk össze, illetve egészítjük ki az eltemetett paleotalaj mintáin végzett fitolitelemzés eredményeivel. A növényi opálszemcsék ellenálló képessége — egyéb mikro- és makroszkopikus, szervesanyagú növényi eredetű maradvánnyal szemben — lehetőséget ad a fitolitelemzés módszerének széleskörű paleoökológiai alkalmazására. A növényi szövetből történő feltáródásukat követően még hosszú ideig extrém körülmények között is fennmaradnak a befoglaló közegükben: megőrzik a képződési körülményeikre jellemző formájukat, anatómiai származásukra vonatkozó tulajdonságukat, textúrájukat. Ezzel megteremtik a lehetőségét, hogy a fitolitkutatás a paleoökológia és paleotalajtan tudományában, mint önálló kutatási irányzat szerepet kapjon. A növényi opálszemcsék a talajok fejlődéstörténetének hírmondói is egyben, így a megfelelő peremfeltételek teljesülése esetén egy-egy talajszelvény képződését is jellemezhetjük a módszer felhasználásával.

A Bán-halom rétegtani vizsgálatát a halmon végzett sekélyföldtani fúrás által szolgáltatott fúrómagok morfológiai, illetve alapvető laboratóriumi vizsgálatai alapján lehet felvázolni. Eszerint a halom palástját adó recens talajképződmény alatt legalább négy, morfológiailag jól elkülönülő kultúrréteg helyezkedik el, amely alatt 470 cm-es relatív mélységben található az építés előtti járószint, azaz az eltemetett paleotalaj felszíne.

Az eltemetett talaj Ap- és részben Bp-szintjéből, valamint a paleotalaj és — kronológiai értelemben — az első kultúrréteg (K1) határrétegéből 10 cm-es mintázási intervallummal gyűjtött talajminták fitolitelemzése szerint a Bán-halom építése előtti környezetet erős felszínbolygatás érthette. Ellentétben a temetkezési dombokon (kurgánokon) végzett — hasonló metodikájú — vizsgálatokkal, jelen esetben feltételezzük a halom alatti terület korábbi használatba vételét, a megtelepedést. Ennek egyik legfontosabb bizonyítéka a gabonák egykori jelenlétére utaló fitolit morfotípusok megjelenése a mintákban. Mindemellett az eltemetett paleotalaj morfotípus spektruma azt támasztja alá, hogy a halom építési pontjának környezetében a természetes vegetációt a környező homokbuckák sztyeppei, félszáraz vegetációja uralta, amelyben fás szárú fajok egykori megjelenése, illetve dominanciája nem rekonstruálható.

Restricted access

Az arzénnal szennyezett termőterület a világ valamennyi részére kiterjedő globális problémát jelent. Az arzén a növények számára nem esszenciális mikroelem, mely a szennyezett talajon történő növénytermesztés által a növények számára felvehetővé válik. Az arzén felvételének következtében olyan növényfiziológia folyamatok sérülhetnek, melyek súlyos anomáliák kialakulásához vezetnek.

Kutatómunkánk célja növekvő koncentrációjú (0, 3, 10, 30, 90 és 270 mg kg−1) arzénkezelésben részesített talajon termesztett zöldborsó szárazanyag-produktumában bekövetkező változások nyomon követése mellett, az egyes növényi szervek (gyökér, szár, levél, hüvely, szem) arzén-akkumulációs képességének megállapítsa volt. Vizsgáltuk továbbá a talaj arzén-terhelésének hatását a kísérleti növény egyes szerveinek P-tartalmára vonatkozóan is. Munkánk tárgyát képezte továbbá a növekvő koncentrációban arzénnal kezelt talaj „összes“, illetve „oldható“ arzéntartalmának megállapítása.

Arra a következtetésre jutottunk, hogy a talaj növekvő koncentrációjú arzénterhelésének hatására valamennyi növényi szerv arzéntartalma nőtt. Az egyes növényi szervek arzén-akkumulációs képességének sorrendje a következő: gyökér > szár > levél > hüvely > szem. Habár valamennyi kezelésnél az arzén döntően a gyökérben akkumulálódott, a 270 mg kg−1-os kezelés esetén a gyökér már nem volt képes az arzén visszatartására, így a transzlokációja jelentősen fokozódott a talajfelszín feletti szervek irányába is.

A gyökérben akkumulálódott jelentős mennyiségű arzén a gyökér szárazanyag-produktumára nézve gátló hatást fejtett ki. A hüvely és szem esetén a legnagyobb (270 mg kg−1), míg a szár és levél esetén a legnagyobb kezelés mellett a 90 mg kg−1- os kezelés is szignifikánsan csökkentette az említett szervek szárazanyag-tartalmát. Ugyanakkor a 10 mg kg−1-os kezelés fokozta a levél és szár, míg a 3 és 10 mg kg−1- os kezelés növelte a generatív részek szárazanyag-tartalmát.

Az egyes szervek foszfortartalmának meghatározására irányuló vizsgálataink eredményei alapján megállapítható, hogy a szem, hüvely, levél, valamint szár esetén a 270 mg kg−1-os, míg a gyökérnél már a 90 mg kg−1-os kezelés hatására is nőtt, a kisebb koncentrációjú kezelések hatására azonban szignifikánsan nem változott az említett növényi szervek P-tartalma. A P-As arány tekintetében a kezelések hatására azonban drasztikus csökkenés volt megfigyelhető valamennyi növényi szerv esetén.

A talajvizsgálati eredmények alapján azt a konklúziót vontuk le, hogy a talaj „összes“ arzéntartalmának — a különböző adszorpciós folyamatoknak, illetve a talaj puffer kapacitásának köszönhetően — csak 38,6–56,9% van a növények számára is hozzáférhető formában jelen.

Restricted access

Tanulmányunkban ismertetett talajtermékenységi vizsgálatok szervesen kapcsolódnak a Pannon Egyetem Georgikon Kar, Növénytermesztéstani és Talajtani Tanszékén nagy hagyományokkal rendelkező, már több évtizede folyó földminősítési alapkutatásokhoz. A földminősítési kutatások során született eredményekkel kapcsolatosan több olyan kérdés merült fel, amelyek tisztázása eddig még nem történt meg. Megoldandó feladatként jelentkezett többek közt, hogy az országos összesítésben nem jelentős területi arányt elfoglaló, de egy-egy tájra vagy termőhelyre jellemző talajváltozatokra a becsült átlagos termékenység értékek — mintaterületi adatbázisok növénytermesztési- és talajtani információinak felhasználásával — pontosításra kerüljenek.

A termékenységi vizsgálatainkat a Dél-Alföldön, a Tisza-Maros közén elhelyezkedő, zömében nagy agyagtartalmú csernozjom és réti talajváltozatokon végeztük. A termékenységi becslésekhez a mintaterületek rendelkezésre álló talajinformációit (1:10.000 léptékű üzemi és földminősítési genetikus talajtérkép, 1:25.000 Kreybig-féle átnézetes talajismereti térképek), illetve földművelési egység (tábla és résztábla) szintű, hosszú idősoros mért terméseredményeit használtuk fel. A számítások során az Agrokémiai Információs és Irányítási Rendszer (AIIR) adatbázis többéves (1985–1989) terméshozamaiból becsült átlagos talajváltozati termékenység értékeket korrigáltuk a mintaterületek talajféleségein (talajfoltjain) mért terméseredményekkel, a számításokhoz iterációs módszert használtunk.

A dél-alföldi mintaterületeken kidolgozott módszer lehetőséget nyújt arra, hogy a hazai földértékelés majdani megújításakor a begyűjtött különböző talajtérképi- és talajadatbázis információk, valamint a többéves termés adatsorok alapján egyes talajtaxonómiai egységekre pontosítsuk, illetve az eddig még hiányzó talajváltozatokra kiegészítsük a földminőséget kifejező mutatószámot.

A mintaterületekre kapott eredmények arról tanúskodnak, hogy a becslési eljárás pontosítható az iterációs számítás peremfeltételeinek megválasztásával („A“ típusú helyett „B“ típusú becslés), illetve különböző szempontok szerinti csoportképzésekkel. A vizsgálataink során kapott nagyon eltérő becslési megbízhatóság értékek arra hívják fel a figyelmet, hogy a földművelési egységek termékenységi viszonyait csak részben tudjuk modellezni és magyarázni az egyes talajváltozati foltok termékenységi viszonyaival.

Restricted access

A vizsgálat célja különböző bioszeneknek a talaj nitrifikációs folyamataira gyakorolt hatásának tanulmányozása volt. Kísérleteink során eltérő mennyiségű és típusú bioszénnel kevert talajt különböző hőmérsékleten vizsgáltunk. Az eredményeink alapján a legnagyobb különbségeket a nitrifikációs potenciálban a hőmérséklet eredményezte. Az alacsony hőmérséklet gátolta vagy nagymértékben lelassította a nitrifikációs folyamatokat. 20 °C valamint 30 °C hőmérsékleten a nitrát képződés hasonlóan alakult, kiemelve a nyári időszakban történő minimális bioszén hatást a nitrifikáló mikroorganizmusokra. így elmondható, hogy tavaszi időszakban a bioszén hatása a nitrifikáló baktériumokra a legkiemelkedőbb, 10 és 20 °C között. Magas hőmérséklet (30 °C) esetében a nettó nitrifikációs potenciál akár háromszorosára is megnőtt a 20 °C-os hőmérséklethez képest. Ugyanakkor elmondható, hogy a magas hőmérséklet negatívan befolyásolta a talajban lévő mikrobiális közösséget, kiemelkedően a CT bioszén esetében. A különbségeket a nitrifikációs értékekben a különböző bioszén típusoknál és mennyiségeknél egyaránt megfigyeltük. 2% bioszén talajhoz adásával szignifikáns különbségeket találtunk a kontroll kezeléshez képest, viszont a nagyobb mennyiségű bioszén hozzáadás hatása már nem volt szignifikáns egymáshoz viszonyítva. A bioszén típusok közül a PY típusú bioszén eltérő mennyiségei mutatták a legkisebb változást a nitrát képződésben.

Munkánkat az OTKA PD-116157 kutatási projekt támogatta a Bolyai János Kutatási Ösztöndíj mellett. Külön köszönet Mózes Mariann, Bányász Ágnes és Dencső Márton részére az anyag előkészítésében és laboratóriumi vizsgálatokban nyújtott segítségükért.

Restricted access