Browse Our Earth and Environmental Sciences Journals

Earth and environmental sciences cover all planetary and Earth science aspects, including solid Earth processes, development of Earth, environmental issues, ecology, marine and freshwater systems, as well as the human interaction with these systems.

Earth and Environmental Sciences

You are looking at 281 - 290 of 1,541 items for

  • Refine by Access: All Content x
Clear All

A field experiment with microelement loads was set up on loamy-textured, calcareous chernozem soil formed on loess. The ploughed layer contained about 5% CaCO3 and 3% humus. The soil was well supplied with Ca, Mg, Mn and Cu, moderately supplied with N and K, and weakly supplied with P and Zn. The water table is at the depth of 15 m, the water-balance of the area is negative, and the site is drought-sensitive. Salts of the 13 examined microelements were applied at 4 levels in the spring of 1991.Treatments were arranged in split-plot design, in a total of 104 plots with two replications. Loading rates were 0, 90, 270 and 810 kg/ha per elements in the form of AlCl3, NaAsO2, BaCl2, CdSO4, K2CrO4, CuSO4, HgCl2, (NH4)6Mo7O24, NiSO4, Pb(NO3)2, Na2SeO3, SrSO4, and ZnSO4. Soil profiles of the control and the 810 kg/ha treatment were sampled in the 3rd, 6th and 10th year of the trial. The mixed samples, consisting of 5 cores/plot, were taken every 30 cm to the depth of 60 (1993), 90 (1996) and 290 (2000) cm. NH4-acetate + EDTA-soluble element content was determined. The scheme for vertical movement of soluble elements in soil profile as a function of time is shown in Fig. 1. The main conclusions of the study can be drawn as follows:

  1. 1. On contaminated soil with 810 kg/ha loading rates, As, Hg, Ni, Cu, Pb, Ba and Sr displayed no significant vertical movement. The movement of these elements is blocked in the soil-plant system: their accumulation in the above-ground plant parts usually remains below 5–10 mg/kg D.M., with the exception of Ba and Sr which showed a somewhat higher accumulation. On this soil the above elements do not seem to be dangerous contaminants either to soil, groundwater or plants. Extreme As and Hg loads, however, resulted in phytotoxicity in some plants.
  2. 2. Moderate extent of leaching occurs in the case of Zn and Cd, when they are enriched significantly. Their accumulation was moderate in the above-ground plant parts. Zn is not a dangerous pollutant either for soil, plants or groundwater at this site. Cd, however, is a very dangerous element from the human toxicological point of view and more extreme Cd loads also proved to be toxic for soil life, crops yield and quality.
  3. 3. Cr, Se, and Mo (in the form of chromate, selenate and molybdenate anions) exhibited great mobility in the soil and partly in the soil-plant system. Cr was hardly detectable in the above-ground floral parts. Its rapid leaching, however, can jeopardize groundwater quality. Se showed hyperaccumulation in all plant organs with high toxicity for all kind of crops. Mo also showed two or three orders of magnitude greater accumulation in plant parts, resulting in products unfit for animal or human consumption. Under our experimental conditions Cr(VI), Se, Mo can be classified as dangerous contaminants, since the anion forms remained stabile for a long time in this well-aerated calcareous environment.

Restricted access
Central European Geology
Authors:
Ubul Fügedi
,
László Kuti
,
Daniella Tolmács
,
Ildikó Szentpétery
,
Barbara Kerék
,
Tímea Dobos
,
András Sebők
, and
Rita Szeiler

South of the Sudetes and Tatra Mountains young sediments contain more of almost all micro- and mesoelements than those to the north of the Carpathian Mountains, which were covered by ice during the Late Pleistocene. As detailed investigations show this larger unit is a collection of many individual geochemical regions, among which there are four on the area of Hungary: the region of soil calcification in the central part of Hungary, the slope debris of the foothills of the Eastern Alps, the floodplains of the rivers of Eastern Hungary that are contaminated with the waste material of heavy industry, and the rest of the country. No general geochemical background can be given to the whole; the background value intervals for each element shall be given for each geochemical region separately. In Eastern Hungary, where those rivers flow that originate from the heavy industrial centers of Transylvania and Slovakia, the toxic elements can locally exceed the limit value. In the central part of the country, however, the micro-elements are frequently found below the minimum concentration required, since a carbonate accumulation zone develops above the groundwater level and the carbonate minerals contain low amounts of nutrient elements.

Restricted access

The aim of this paper is to examine the relationship between soil properties and potentially toxic element contents of arable soils based on the dataset of the Soil Information and Monitoring System in Hungary. Nine potentially toxic elements (As, B, Cd, Co, Cr, Cu, Ni, Pb, Zn) were compared with selected soil parameters. We carried out grouping of related soil properties by principal component analysis. The method was suitable to describe the relationship within groups of the soil properties. We studied correlations of the resulting components and potentially toxic elements. The change of Ni content was influenced by the physical properties of the soil (e.g. clay content, field capacity, R = 0.67). Boron is the only one of the examined elements that indicates significant positive correlation with saline-alkali (R = 0.21) parameters. Zn, Co and Cr behaved very similarly; their correlation with components 1 and 2 were the closest.

Restricted access
Central European Geology
Authors:
István Zsámbok
,
Anita Andó
,
László Kuti
, and
András Sebők

The birth of urban geologic maps (which are considered environmental-geologic themed maps) and the progress in development of their content and design were driven by the growing importance of addressing environmental problems, and the increasing complex utilization of urban areas. Therefore, MÁFI and, since 2012, the MFGI Department of Environmental Geology, have prepared a series of maps for the local authorities of Budapest. These maps usually focus on the problems of urban planning from the viewpoint of geology, hydrogeology, and water chemistry, and as experience shows, they prove to be excellent tools in decision-making processes. This paper examines the chemical content of groundwater, which is one of the main indicators of the state of the environment. According to the everyday experience of the authors it is very useful to understand the state of both quality and quantity of subsurface and surface water. In a recent series of research work we measured the zinc, copper, boron and arsenic level of the groundwater in 10 districts of Budapest.

Restricted access

Understanding and simulating the interaction of groundwater and surface water is essential to hydrologists. Water supply and water quality aspects are a few examples of common water-resource issues where understanding the interconnections of groundwater and surface water is fundamental to develop an effective water-resource management and policy. In our study a detailed investigation of a riverbank aquifer was performed to be able to simulate and predict the behavior of the flow system. The continuous hydraulic head measurements in the area of interest showed strong influence on the hydraulic head field caused by intensively changing river head at a distance from the river up to 3,500 m. Based on the results steady state and transient flow calculations were compared, and a great effort has been made to ensure that the model more precisely describe the time and space variable flow field. Beside fulfilling the standard calibration requirements, a multi-step calibration process was performed.

Open access

The Euganean Geothermal Field (EGF) is the most important thermal field in northern Italy. It is located in the alluvial plain of the Veneto Region where approximately 17*106 m3 of thermal water with temperatures of 60–86 °C are exploited annually. A regional-scale conceptual model of the Euganean Geothermal System is proposed in this paper using the available hydrogeologic, geochemical and structural data for both the EGF and central Veneto. The thermal water is of meteoric origin and infiltrates approximately 80 km to the north of the EGF in the Veneto Prealps. The water flows to the south in a Mesozoic limestone and dolomite reservoir reaching a depth of approximately 3,000 m and a temperature of approximately 100 °C due to the normal geothermal gradient. The regional Schio-Vicenza fault system and its highly permeable damage zone act as a preferential path for fluid migration in the subsurface. In the EGF area, a geologic structure formed by the interaction of different segments of the fault system increases the local fracturing and the permeability favoring the upwelling of the thermal waters. Numerical simulations are performed to validate the proposed conceptual model using a finite difference code that simulates thermal energy transport in hydrothermal systems. A specific configuration of thermal conductivity and permeability for the formations involved in the thermal system is obtained after calibration of these parameters. This set of parameters is verified in a long-term simulation (55,100 years) obtaining a 60–70 °C plume in the EGF area. The modeled temperatures approach the measured temperatures of 60–86 °C, demonstrating that this conceptual model can be realistically simulated.

Open access
Central European Geology
Authors:
Attila Kovács
,
Ágnes Rotár Szalkai
,
Zsolt Kercsmár
, and
Tibor Cserny

A coupled groundwater flow and heat transport model was developed for a trans-boundary geothermal reservoir located in the Alpokalja area. The study area lies in the western part of the Pannonian Basin, at the border between Hungary and Austria. The study area contains several famous geothermal water utilizations on both sides of the border, which has an impact on natural groundwater conditions. The aim of the modeling study was to evaluate the natural-state and production-state groundwater conditions, and to make predictions on cross-boundary interferences. A three-dimensional finite element-type coupled geothermal model was constructed to provide a coherent quantitative representation of geothermal flow systems. The model described the hydraulic behavior of the flow system, the interaction between different reservoirs, and geothermal conditions.

Open access

Gravity-driven groundwater flow systems function in topographic basins as subsurface conveyor belts. They pick up and move fluids, gases, solutes, colloids, particulate matter and heat from loading sites in recharge areas and/or on their way to the discharge areas and can deliver them “en route” or in discharge regions. Gravitational flow systems of various horizontal and vertical extents are organized into hierarchically nested complex patterns controlled by the configuration of the water table’s relief and modified by the rock framework’s heterogeneities of permeability. The systems are ubiquitous and act simultaneously on broad ranges of the spatial and temporal scales of measurement. Their universal geologic agency is manifest by numerous different, even disparate, natural processes and phenomena. Several of these are associated with geothermal heat flow. The understanding of geothermal phenomena in the context of basinal flow systems requires, therefore, an intimate familiarity with the overarching “Theory of regional groundwater flow” which, in turn, comprises two component theories: “The hydraulics of basin-scale groundwater flow systems” and “The geologic agency of basin-scale groundwater flow-systems”. The paper’s outline is based on this conceptual structure. The paper presents examples for geothermal effects of groundwater flow by means of the first theoretical models and some case studies of thermal springs and wells, and petroleum accumulations. The final section reflects the author’s conviction that geothermal studies cannot be complete without consideration and understanding of the area’s groundwater flow regime.

Open access

Although the Acque Albule Basin has been studied since the middle of the 19th century, a comprehensive geologic conceptual model of the area has not yet been developed. The natural setting has been heavily modified by anthropic activities. Rapid evolution during the last 25 years has caused many interferences, which have led to a drastic increase of the hazards and linked risks, mainly related to water resource overexploitation and subsidence.

The implementation of an exhaustive framework has become mandatory for environmental and management purposes. Starting from a critical review of previous studies, hydrogeologic and hydrogeochemical surveys and related numerical modeling have been carried out in order to achieve a quantitative understanding of the active phenomena and processes.

Several hydrogeologic issues have been addressed concerning aquifer recharge areas and the different flowpaths of groundwater in respect to their division into a shallow and a deep circuit. Account has been taken of the groundwater chemistry as a function of water—rock interactions and mixing processes with uprising fluids. Different scenarios of groundwater flow in the Acque Albule aquifer have been built, using previously available piezometric measurements and the hydrodynamic parameters determined by in situ tests. These results led to the formulation of an updated hydrogeologic conceptual model to be further implemented, in which past, present and future anthropic instances and the potential of natural resources of the area have been included and taken into account. A sound conceptual model must rely on the design and development of a logical geo-database in which information is stored, updated and processed. This operational framework can result in a useful tool for land management, surveys planning and design, hazard and risk evaluation, identification of best practices and economic development of the area.

Open access

The general characterization of the Hungarian Szentes geothermal field is presented based on the review of previous research and is supplemented with the analysis of well hydraulic tests. Forty thermal wells were included in the study area, producing mainly from Upper Pannonian sandstone reservoirs. The intensive and long-term production of thermal water reservoirs without reinjection resulted in significant reservoir pressure decrease from natural conditions. By means of deep-well pressure build-up curves, deep-well capacity curves and surface pressure curves the reservoir condition changes were described in the last half century.

Open access