Browse Our Earth and Environmental Sciences Journals

Earth and environmental sciences cover all planetary and Earth science aspects, including solid Earth processes, development of Earth, environmental issues, ecology, marine and freshwater systems, as well as the human interaction with these systems.

Earth and Environmental Sciences

You are looking at 371 - 380 of 1,551 items for

  • Refine by Access: All Content x
Clear All

Mészlepedékes csernozjom vályogtalajon, az MTA ATK TAKI Nagyhörcsöki Kísérleti Telepén (Mezőföldön) vizsgáltuk a K, B és Sr elemek közötti kölcsönhatásokat a kísérlet 11. évében, 1998-ban mák növénnyel.Az alaptrágyázás általában 100–100 kg N és P2O5·ha−1·év−1 volt, amelyet 25%-os pétisó és szuperfoszfát formájában adtunk ki. A K-szinteket megismételt 0, 1000, 2000 kg K2O-, a B-szinteket megismételt 0, 20, 40, 60 kg B-, a Sr-szinteket 67 kg Sr hektáronkénti adaggal állítottuk be. Műtrágyaként 60%-os KCl-ot, 11%-os bóraxot és 33%-os SrCl2·6H2O sót alkalmaztunk. Főparcellánként három K-kezelés, alparcellánként négy B-kezelés, al-alparcellánként két Sr-kezelés szolgált, 24 kezeléssel×3 ismétlésben = 72 parcellával, osztott parcellás elrendezésben.A kisérlet béallításakor (1987 őszén) a szántott réteg 5% CaCO3-ot, 3% humuszt, 20% agyagot tartalmazott. A pH(H2O) 7,8; a pH(KCl) 7,3; az AL-oldható K2O es P2O5 180–200 es 100–120, a KCl-oldhato Mg 110–150, a KCl+EDTA-oldható Mn 60–80, a Cu és Zn 1–2, valamint a B 0,7 mg·kg−1 értékkel volt jellemezhető. A termőhely kielégitő K-, Ca- és Mg-; közepes N- és P-; valamint gyenge Zn- és Cu-ellátottságu. A talajvíz szintje 13–15 m mélyen található, a terület aszályérzékeny. Az átlagos középhőmérséklet 11 °C, az éves csapadékösszeg 400–600 mm közötti, egyenetlen eloszlással.A Kompolti M fajtájú mákot 1998. március 16-án vetettük el 45 cm sortávolságra, 1–2 cm mélyre. A kísérletben végzett agrotechnikai műveletekről és a vonatkozó módszertani megfigyelésekről az 1. táblázat ad áttekintést.A főbb megállapítások, levonható következtetések:

  1. — Ebben a kedvező csapadékellátottságú évben a kezeléshatások elmaradtak. Az aratáskori szár 3,4, a tok 1,1, a mag 1,6 t·ha−1 tömeget adott, a mák összes légszáraz föld feletti biomassza tömege 6,1 t·ha−1 mennyiséget tett ki.
  2. — A bórtrágya hat év után sem mosódott a mélyebb talajrétegekbe. A sekélyen gyökerező mák szerveinek B-tartalma a többszörösére nőtt a B-terheléssel. Mérséklődött ezzel egyidejűleg a szár és a tok Ca- és Mg-koncentrációja. A K-trágyázás emelte a szár és a tok K-, illetve csökkentette a Mg %-át. Igazolható volt a hat évvel korábban adott 67 kg Sr·ha−1 Sr-trágyázás hatása is a mákszervek emelkedett Srtartalmában.
  3. — Az 1 t mag és a hozzá tartozó melléktermés fajlagos/egységnyi elemtartalma 79-41-114-109-20 = N-P2O5-K2O-CaO-MgO kg·t−1 mennyiségnek adódott. Hasonló fajlagos értékeket mértünk korábbi kísérleteinkben is, melyek a hazai szaktanácsadásban ajánlott N, P és K fajlagosokat átlagosan mintegy kétszeresen, a Ca és Mg fajlagosokat 5–6-szorosan múlják felül. Javasoljuk a hazai szaktanács revízióját.

Restricted access

A talaj szén-dioxid kibocsátását, valamint általában véve a talaj szénkészletének változásait az utóbbi időben jelentős tudományos érdeklődés kíséri a klímaváltozással mutatott szoros összefüggésének köszönhetően. A mezőgazdasági művelés alatt álló talajok az okszerű gondozásnak betudhatóan lehetőséget biztosítanak a talaj szénveszteségének csökkentésére vagy a szénmegkötő képesség növelésére, amelylyel párhuzamosan javul a talaj minősége. A megfelelő kezelési módok fejlesztéséhez nélkülözhetetlen a talajlégzés mechanizmusainak megismerése, valamint a talajlégzést befolyásoló biotikus és abiotikus tényezők megváltozására adott válaszának vizsgálata, melynek során elengedhetetlen a legkorszerűbb módszerek alkalmazása.Jelen tanulmányban a talajrespiráció laboratóriumi mérésének módszertanát vizsgáljuk. Vizsgálatainkban két célt tűztünk ki: 1. a talajbolygatás emissziómérésre gyakorolt hatásának felmérését és annak kiküszöbölését, 2. a talajnedvesség hatásának vizsgálatakor biztosítani a különböző fizikai féleségű talajok összevethetőségét.A kísérleti eredmények értékelése után a bolygatatlan talajminták vizsgálatát ajánljuk, amelyek jóval megbízhatóbb adatokat szolgáltatnak a talajlégzésől, mivel a talajszerkezet a lehető legkevésbé változik meg. Vizsgálataink alapján azt is megállapítottuk, hogy a különböző fizikai féleségű talajok esetén a talaj CO2-kibocsátásának értékelésekor az eredmények összehasonlíthatósága érdekében a talaj vízpotenciált ajánlott használni a térfogatszázalékos talajnedvesség-tartalom helyett.Tóth Eszter publikációt megalapozó kutatása a TÁMOP 4.2.4.A/2-11-1-2012-0001, Gelybó Györgyié a TÁMOP 4.2.4.A/1-11-1-2012-0001 számú Nemzeti Kiválóság Program — Hazai hallgatói, illetve kutatói személyi támogatást biztosító rendszer kidolgozása és működtetése országos program című kiemelt projekt keretében zajlott. A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg. A kutatás szakmailag kapcsolódik az Országos Tudományos Kutatási Alap (OTKA K101065 és OTKA K104816) projektjeihez.

Restricted access

Eredményeink alapján megállapítottuk, hogy a barlangi üledékek részben eredetük, részben a bennük lezajló folyamatok alapján talajnak tekinthetők. A barlangi talajok sokszor sekélyek, közvetlenül a szilárd kőzeten helyezkednek el. Általában rétegzettek, a rétegek egymástól elkülönülnek, öntés eredetűek. Szervesanyagtartalmuk a behordott anyagoktól függ, gyakran jelentős mennyiségű lebomlatlan szerves hordalékot, üledéket tartalmaz, amire alapozva nagyon intenzív talajélet alakul ki, ami a talaj szerkezetében is felismerhető és néhol vermic tulajdonságokat is létrehozhat. Fizikai félesége nagyon változatos, az agyagtól a durva kavicsos homokig minden frakció megtalálható.A talajok anyaga szinte 100 százalékban meszes, mely mész másodlagos eredetűnek tekinthető, mennyisége pedig legalább 2%. Ebből következően a pH értékei a semleges és a 8,5 értékek között szórnak, többnyire a 8-as érték körül csoportosulva. Ritkán a glejesedés is megjelenik, elsősorban a lefolyástalan üledékgyűjtőkben, amin a víz nem folyik át és nem tud oldott oxigéntartalmában felfrissülni. A nagy oldott oxigéntartalommal jellemzett ún. „oxy-aquic” állapotban nem redukálódik a vas, a glejesedés nem indul el.Talajtani szempontból a barlangi üledékek nagyon változatos képet mutatnak. Bennük azonban a lerakódási rétegzettségen túl számos talajképződési folyamat is felismerhető, melyek sok tekintetben analógnak tekinthetők a felszíni folyamatokkal, ezért mindenképpen a talajok közé kell sorolni. Mindezek alapján a barlangi talajok a magyar osztályozás szerint elsősorban az öntés-, illetve a kőzethatású talajok közé sorolhatók be. A WRB szerint elsősorban a Fluvisolok és a Leptosolok referencia csoportjába osztályozhatók, a megvizsgált talajok alapján pedig jellemzőiket a leptic (epileptic), fluvic (ritkábban colluvic), vermic, calcaric, eutric, gleyic, esetleg mollic és rhodic minősítőkkel írhatjuk le.Az ásványtani vizsgálatok viszonylag kisszámú saját, illetve referencia mintája ellenére kijelenthető, hogy egyértelmű trendek voltak felismerhetők a barlangi üledékekben. A mintákat felszíni talajokhoz vagy kőzetekhez kötni a vízgyűjtő terület jelenlegi és történeti heterogenitása miatt nehéz. Ami viszont megállapítható volt az az, hogy a barlangi talajok ásványainak körülbelül felét kvarc ásvány alkotja - a fizikai féleség függvényében 38% és 73% között. Agyagásvány frakciójában viszont a szmektit-vermikulit társulások uralkodnak, nyolc mintából hét esetében a teljes frakció 80-90%-át alkotva. Ettől eltérő csak a Mexikói 2-es minta, ahol érdekes módon a frissnek tekinthető, viszonylag mállatlan, kilúgozatlan illit-muszkovit keveredik az erős mállást jelző kaolinittel. Ennek magyarázata valószínűleg az eltérő eredetű anyagok időben, vagy a mintavételezésnél történt egymásra rakódásával magyarázható, mely elmélet alátámasztása a későbbiekben további, részletesebb vizsgálatokat igényel.A munkát a „Kútfő” TÁMOP-4.2.2.-A11/1/KONV-2012-0049. jelű projekt és a határon átnyúló HUSK/1001/2.1.2/0058. számú projekt támogatta.

Restricted access

Dolgozatunkban Zala megye feltalajainak szervesanyag-tartalmát kívántuk digitálisan térképezni regresszió krigeléssel a rendelkezésünkre álló Digitális Kreybig Talajinformációs Rendszer (DKTIR) adataira, illetve környezeti segédváltozókra alapozva. A térbeli kiterjesztések során különböző kombinációkban használtuk fel a talajképződési tényezőket, illetve DKTIR talajtérképi egységeit. Munkánk célja volt, hogy a regresszió krigelés modelljébe vont segédváltozó kombinációk minőségi hatását vizsgáljuk a becslő eljárás alapját jelentő többszörös lineáris regresszió modellre, illetve a becsült térkép pontosságára vonatkozóan.A szervesanyag-tartalom térbeli kiterjesztéséhez szükséges segédváltozókat a szakirodalom alapján választottuk ki. Segédadatként használtuk fel Zala megye digitális domborzatmodelljét, a 2009 és 2011 között készült MODIS műholdképekből származtatott vegetációs index állományokat, két klímaparaméter fedvényét, illetve a DKTIR talajtérképi egységeit. A regresszió krigeléssel becsült humusztartalom térképeket a DKTIR talajszelvény adataiból előzetesen leválogatott, a becslési eljárástól független kontroll adatpontokkal értékeltük. A validációhoz származtattuk a ME (Mean Error), a MAE (Mean Absolute Error), az RMSE (Root Mean Square Error), illetve az RIi(%) (Relative Improvement) paraméterek értékeit, ahol utóbbi az egyes térképek pontosságának relatív növekedését fejezi ki egy viszonyítási alapnak választott térképhez képest.A vizsgalati eredmenyek alapjan a terbeli talajinformaciok segedadatkent torten. felhasznalasa jelentősen novelte a regresszio modellek determinacios koefficienseinek erteket, illetve a becsult humuszterkepek pontossagat. A talajtani segedinformaciokat is figyelembe vevő regresszio modellek R2 ertekei — ket eset kivetelevel — joval meghaladtak a 30%-ot, vagyis a szervesanyag-tartalom terbeli valtozekonysaganak tobb mint egyharmadat voltak kepesek determinalni. A validacios mutatok alapjan azon terkepek bizonyultak pontosabbnak, melyekben a DKTIR talajok textura es vizgazdalkodasi tulajdonsagait (DKTIR-F) hasznaltuk fel talajtani segedvaltozokent. A legalacsonyabb MAE ertekkel (0,747) a domborzati es eghajlati talajkepző tenyezőket, illetve a DKTIR-F talajterkepi egyseget segedvaltozokent alkalmazo humuszterkep rendelkezett, ezen terkep eseten az RIi(%) parameter erteke 21%-nak adodott. A mutatok alapjan ezen terkep adta a legpontosabb becslest a mintaterulet szervesanyag-tartalmara, hisz a felhasznalt segedvaltozokon keresztul figyelembe veszi a mintaterulet szervesanyag-tartalmat alapvetően befolyasolo eroziot es akkumulaciot, illetve a talajok fizikai feleseget, mely utobbi hatassal van a vizhaztartasra, a beszivargasra, a kilugozasra es ezeken keresztul a humuszkepződes folyamatara. A biologiai talajkepző tenyezőt reprezentalo MODIS vegetacios index allomanyok eseteben megfigyelhető volt, hogy segedadatkent tortenő alkalmazasuk eseten kevesbe pontos becsleseket kaptunk osszevetve az ezen segedadatokat mellőző becslesekkel.Munkánkat a K105167 számú OTKA, illetve a TÁMOP-4.2.2.A-11/1/KONV-2012-0013. pályázatok támogatják.

Restricted access

Mészlepedékes csernozjom vályogtalajon beállított szabadföldi kísérletben vizsgáltuk a N és a Cu elemek közötti kölcsönhatásokat 1988-ban tavaszi árpával. A termőhely talaja a szántott rétegben 3% humuszt, 5% körüli CaCO3-ot és 20% körüli agyagot tartalmazott. A talajelemzések alapján a terület jó Ca-, Mg-, K- és Mn-, kielégítő Cu-, közepes N-, valamint gyenge-közepes P- és Zn-ellátottságú volt. A talajvíz 13-15 m mélyen található, a terület aszályérzékeny. A kísérletet 4N×3Cu = 12 kezelés×3 ismétlés = 36 parcellával állítottuk be osztott parcellás (split-plot) elrendezéssel. A N-adagokat (0, 100, 200 és 300 kg N·ha−1) Ca-ammónium-nitrát, a Cu-adagokat (0, 50 és 100 kg Cu·ha−1) CuSO4 formájában adtuk ki. Áprilisban és májusban a szokásos csapadék csupán 1/3-a, júliusban a fele hullott. A jelzőnövényként használt Mars fajtájú tavaszi árpát 5 cm mélyre vetettük 12 cm gabona sortávra, 60–70 db·fm−1 csíraszámmal és 200 kg·ha−1 vetőmagnormával. A növény-állományt parcellánként 1–5 skálán bonitáltuk bokrosodás, virágzás és betakarítás idején. A betakarítást követően talajmintavételre is sor került a szántott rétegből, parcellánként 20–20 lefúrásból képezve átlagmintákat. A növénymintákat tíz elemre vizsgáltuk. A talajmintákban meghatároztuk a KCl-EDTA-oldható Cu-tartalmat, valamint a KCl-kicserélhető NH4-N- és NO3-N-tartalmat.A főbb eredményeket a következőkben foglaljuk össze:

  1. — A 100–300 kg N·ha−1 N-trágyázás 20–25%-os szemterméscsökkenést eredményezett az évelő pillangós lucerna elővetemény után. A Cu-trágyázás teljesen hatástalan maradt a termésre ezen a kielégítő Cu-ellátottságú talajon. Az átlagos termés-szint 3 t·ha−1 szem- és 3 t·ha−1 melléktermést jelentett mindössze. A kis termés N-igényét ebben a száraz évben a trágyázatlan talaj is kielégítette a N-gyűjtő lucerna elővetemény után. A N-kínálattal viszont — a Na és a Zn kivételével — nőtt a bokrosodáskori hajtás makro- és mikroelem-tartalma. Aratáskor a szalmában és szemben található N, Ca, Mn és Cu elemek beépülését szintén serkentette a N-trágyázás. A Cu-trágyázás a növényi összetételt sem módosította. A réz döntően a gyökérben halmozódott fel, ahol a növekvő Cu-kínálattal a Cu-koncentráció a kontrollon mért 28-ról 144 mg·kg−1-ra ugrott.
  2. — A szemtermésben főként a N, P, Mg, Zn és Cu elemek dúsultak. A tavaszi árpa fajlagos, azaz 1 t szem + a hozzá tartozó melléktermés elemtartalma 32 kg N, 19 kg K2O, 12 kg P2O5, 6 kg CaO és 4 kg MgO mennyiséget tett ki. Adataink hasonló termesztési körülmények között felhasználhatók a tavaszi árpa tervezett termésének elemigénye becslésekor a szaktanácsadásban. Megemlítjük, hogy a kapott kis termések fajlagos elemtartalmai átlagosan mintegy 20%-kal meghaladták a normál években kapottakat. A fajlagos N-tartalomban mindezen túl a pillangós elővetemény, valamint a 100–300 kg N·ha−1 adagok miatti N-túlkínálat is tükröződött.
  3. — Az első év után a bevitt Cu-trágya gyakorlatilag teljes mennyisége kimutatható volt KCl+EDTA formában a talaj szántott rétegében. A kontrolltalajon mért 2 mg·kg−1 Cu-tartalom az 50, illetve a 100 kg Cu·ha−1·év−1 Cu-terhelés hatására 22, illetve 44 mg·kg−1 értékre ugrott. A réz növényen belüli (vertikális) transzportja ugyanakkor gátolt volt.

Restricted access

A Duna-Tisza köze homoktalajai a szélerózió által erősen veszélyeztetettek, a szélerózió során a talaj összetevőinek áthelyeződésével együtt a tápanyagok is jelentősen koncentrálódhatnak. Munkánk során arra kerestük a választ, hogy mezőgazdasági területeken a szélerózió mennyiben változtatja meg a talaj felső 0–10 cm- es rétegének mezőgazdasági, környezetvédelmi szempontból fontos összetevőit, úgymint: összes só %, CaCO3-, NO3-NO2-N-, P2O5-, K2O-, Na-tartalom.A kritikus indítósebesség és a kötöttség között összefüggést tapasztaltunk, hiszen az Arany-féle kötöttségi szám rálátást ad a talaj mechanikai összetételére is. Az Arany-féle kötöttségi szám a fontos vízgazdálkodási tulajdonságok mellett a szélerózió érzékenységgel is összefüggésbe hozható (1. táblázat). A nagy agyagfrakció tartalom csak abban az esetben nyújt a szélerózió ellen megfelelő védelmet, ha az adott talaj mechanikai összetételében az iszapfrakció is megfelelő arányban megtalálható.Összességében elmondható, hogy kis iszap- és agyagtartalmuknak, a kis humusztartalomnak, valamint az ebből adódó gyenge nedvességmegkötő és növényzeteltartó képességüknek köszönhetően, a vizsgált talajok szélerózió által rendkívül veszélyeztetettek. A vizsgált mintákkal egyező fizikai féleségű talajokon egy viharos erejű szél öt perc alatt a feltalaj 3—5 cm vastag rétegét mozdíthatja el.A hordalék sókoncentrációja minden esetben nagyobb volt, mint a kontrollmintáké. Erőteljes NO3-NO2-N felhalmozódást figyeltünk meg a szél által elhordott talajfrakciókban. A hordalék NO3-NO2-N-tartalma a talaj eredeti NO3-NO2-N tartalmának kétszeresét is túllépheti. A hordalékban a nitrit-nitrát-nitrogénhez hasonlóan a foszfor-, a kálium- és a nátriumtartalom feldúsulását tapasztaltuk. Az elemtartalom másfél-, kétszeresére nőhet az eredeti talajmintákéhoz képest. Kis szélsebességnél a nagyobb agyag- és iszaptartalmú talajokon a tápelemveszteség kicsi, de nagy szélsebességnél éppen ezen talajoknál nagyon jelentős lehet.

Restricted access