Browse Our Mathematics and Statistics Journals

**Mathematics and statistics journals publish papers on the theory and application of mathematics, statistics, and probability. Most mathematics journals have a broad scope that encompasses most mathematical fields. These commonly include logic and foundations, algebra and number theory, analysis (including differential equations, functional analysis and operator theory), geometry, topology, combinatorics, probability and statistics, numerical analysis and computation theory, mathematical physics, etc.**

# Mathematics and Statistics

In this paper, we propose some new positive linear approximation operators, which are obtained from a composition of certain integral type operators with certain discrete operators. It turns out that the new operators can be expressed in discrete form. We provide representations for their coefficients. Furthermore, we study their approximation properties and determine their moment generating functions, which may be useful in finding several other convergence results in different settings.

Let 𝑓 be a normalized primitive cusp form of even integral weight for the full modular group Γ = 𝑆𝐿(2, ℤ). In this paper, we investigate upper bounds for the error terms related to the average behavior of Fourier coefficients 𝜆_{𝑓}
_{⊗𝑓 ⊗⋯⊗𝑙𝑓} (𝑛) of 𝑙-fold product 𝐿-functions, where 𝑓 ⊗ 𝑓 ⊗ ⋯ ⊗_{𝑙} 𝑓 denotes the 𝑙-fold product of 𝑓. These results improves and generalizes the recent developments of Venkatasubbareddy and Sankaranarayanan [41]. We also provide some other similar results related to the error terms of general product 𝐿-functions.

The paper is devoted to some extremal problems for convex polygons on the Euclidean plane, related to the concept of self Chebyshev radius for the polygon boundary. We consider a general problem of minimization of the perimeter among all 𝑛-gons with a fixed self Chebyshev radius of the boundary. The main result of the paper is the complete solution of the mentioned problem for 𝑛 = 4: We proved that the quadrilateral of minimum perimeter is a so called magic kite, that verified the corresponding conjecture by Rolf Walter.

Let 𝑛 ≥ 2 be an integer. The graph

Motivated by the examples of Heppes and Wegner, we present several other examples of the following kind: a bounded convex region 𝐷 and a convex disk 𝐾 in the plane are described, such that every thinnest covering of 𝐷 with congruent copies of 𝐾 contains crossing pairs.

In this paper we show that the spherical cap discrepancy of the point set given by centers of pixels in the HEALPix tessellation (short for Hierarchical, Equal Area and iso-Latitude Pixelation) of the unit 2-sphere is lower and upper bounded by order square root of the number of points, and compute explicit constants. This adds to the currently known (short) collection of explicitly constructed sets whose discrepancy converges with order *𝑁*
^{−1/2}, matching the asymptotic order for i.i.d. random point sets. We describe the HEALPix framework in more detail and give explicit formulas for the boundaries and pixel centers. We then introduce the notion of an 𝑛-convex curve and prove an upper bound on how many fundamental domains are intersected by such curves, and in particular we show that boundaries of spherical caps have this property. Lastly, we mention briefly that a jittered sampling technique works in the HEALPix framework as well.

We apply a recent general zero density theorem of us (valid for a large class of complex functions) to improve earlier density theorems of Heath-Brown and Paul–Sankaranarayanan for Dedekind zeta functions attached to a number field *𝐾* of degree *𝑛* with *𝑛* > 2.

Asymptotic uniform upper density, shortened as a.u.u.d., or simply upper density, is a classical notion which was first introduced by Kahane for sequences in the real line.

Syndetic sets were defined by Gottschalk and Hendlund. For a locally compact group 𝐺, a set 𝑆 ⊂ 𝐺 is syndetic, if there exists a compact subset 𝐶 ⋐ 𝐺 such that 𝑆𝐶 = 𝐺. Syndetic sets play an important role in various fields of applications of topological groups and semigroups, ergodic theory and number theory. A lemma in the book of Fürstenberg says that once a subset 𝐴 ⊂ ℤ has positive a.u.u.d., then its difference set 𝐴 − 𝐴 is syndetic.

The construction of a reasonable notion of a.u.u.d. in general locally compact Abelian groups (LCA groups for short) was not known for long, but in the late 2000’s several constructions were worked out to generalize it from the base cases of ℤ^{𝑑} and ℝ^{𝑑}. With the notion available, several classical results of the Euclidean setting became accessible even in general LCA groups.

Here we work out various versions in a general locally compact Abelian group 𝐺 of the classical statement that if a set 𝑆 ⊂ 𝐺 has positive asymptotic uniform upper density, then the difference set 𝑆 − 𝑆 is syndetic.

Recently [3] we proved a general zero density theorem for a large class of functions which included among others the Riemann zeta function, Dedekind zeta functions, Dirichlet *𝐿*-functions. The goal of the present work is a (slight) improvement of this general theorem which might lead to stronger results in some applications.

This paper serves as a kick-off to address the question of how to define and investigate the stability of bi-continuous semigroups. We will see that the mixed topology is the key concept in this framework.