Browse Our Mathematics and Statistics Journals
Mathematics and statistics journals publish papers on the theory and application of mathematics, statistics, and probability. Most mathematics journals have a broad scope that encompasses most mathematical fields. These commonly include logic and foundations, algebra and number theory, analysis (including differential equations, functional analysis and operator theory), geometry, topology, combinatorics, probability and statistics, numerical analysis and computation theory, mathematical physics, etc.
Mathematics and Statistics
Abstract
Abstract
For β an ordinal, let PEA
β
(SetPEA
β
) denote the class of polyadic equality (set) algebras of dimension β. We show that for any infinite ordinal α, if
Abstract
Abstract
It is shown that if N(R) is a Lie ideal of R (respectively Jordan ideal and R is 2-torsion-free), then N(R) is an ideal. Also, it is presented a characterization of Noetherian NR rings with central idempotents (respectively with the commutative set of nilpotent elements, the Abelian unit group, the commutative commutator set).
Abstract
In this paper we establish the boundedness of commutators of sublinear operators in weighted grand Morrey spaces. The sublinear operators under consideration contain integral operators such as Hardy-Littlewood and fractional maximal operators, Calderón-Zygmund operators, potential operators etc. The operators and spaces are defined on quasi-metric measure spaces with doubling measure.
Abstract
In this article, the eigenvalues and eigenvectors of positive binomial operators are presented. The results generalize the previously obtained ones related to Bernstein operators. Illustrative examples are supplied.
Abstract
A group G is called metahamiltonian if all its non-abelian subgroups are normal. The aim of this paper is to investigate the structure of uncountable groups of cardinality ℵ in which all proper subgroups of cardinality ℵ are metahamiltonian. It is proved that such a group is metahamiltonian, provided that it has no simple homomorphic images of cardinality ℵ. Furthermore, the behaviour of elements of finite order in uncountable groups is studied in the second part of the paper.
Abstract
We study some mathematical properties of a new generator of continuous distributions called the Odd Nadarajah-Haghighi (ONH) family. In particular, three special models in this family are investigated, namely the ONH gamma, beta and Weibull distributions. The family density function is given as a linear combination of exponentiated densities. Further, we propose a bivariate extension and various characterization results of the new family. We determine the maximum likelihood estimates of ONH parameters for complete and censored data. We provide a simulation study to verify the precision of these estimates. We illustrate the performance of the new family by means of a real data set.
Abstract
The intersection of all maximal right ideals of a near-ring N is called the quasi-radical of N. In this paper, first we show that the quasi-radical of the zero-symmetric near-ring of polynomials R 0[x] equals to the set of all nilpotent elements of R 0[x], when R is a commutative ring with Nil (R)2 = 0. Then we show that the quasi-radical of R 0[x] is a subset of the intersection of all maximal left ideals of R 0[x]. Also, we give an example to show that for some commutative ring R the quasi-radical of R 0[x] coincides with the intersection of all maximal left ideals of R 0[x]. Moreover, we prove that the quasi-radical of R 0[x] is the greatest quasi-regular (right) ideal of it.
Abstract
Let G be a finite group and H a subgroup of G. We say that H is an ℌ-subgroup of G if NG (H) ∩ Hg ≤ H for all g ∈G; H is called weakly ℌ-embedded in G if G has a normal subgroup K such that HG = HK and H ∩ K is an ℌ-subgroup of G, where HG is the normal clousre of H in G, i. e., HG = 〈Hg |g ∈ G〉. In this paper, we study the p-nilpotence of a group G under the assumption that every subgroup of order d of a Sylow p-subgroup P of G with 1 < d < |P| is weakly ℌ-embedded in G. Many known results related to p-nilpotence of a group G are generalized.
Abstract
Let R be a discrete valuation ring,
Abstract
In this article, we study the class of rings in which every regular locally principal ideal is projective called LPP-rings. We investigate the transfer of this property to various constructions such as direct products, amalgamation of rings, and trivial ring extensions. Our aim is to provide examples of new classes of commutative rings satisfying the above-mentioned property.
Abstract
In this paper we study the uniform approximation of functions by a generalization of the Picard and Gauss-Weierstrass operators of max-product type in exponential weighted spaces. We estimate the rate of approximation in terms of a suitable modulus of continuity. We extend and improve previous results.
Abstract
This paper deals with the existence and uniqueness of weak solution of a problem which involves a class of A-harmonic elliptic equations of nonhomogeneous type. Under appropriate assumptions on the function f, our main results are obtained by using Browder Theorem.
Abstract
In this paper, we introduce a new three-parameter generalized version of the Gompertz model called the odd log-logistic Gompertz (OLLGo) distribution. It includes some well-known lifetime distributions such as Gompertz (Go) and odd log-logistic exponential (OLLE) as special sub-models. This new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have a decreasing, increasing and bathtub-shaped failure rate function depending on its parameters. Some mathematical properties of the new distribution, such as closed-form expressions for the density, cumulative distribution, hazard rate function, the kth order moment, moment generating function and the quantile measure are provided. We discuss maximum likelihood estimation of the OLLGo parameters as well as three other estimation methods from one observed sample. The flexibility and usefulness of the new distribution is illustrated by means of application to a real data set.
Abstract
Let R be an IF ring, or be a ring such that each right R-module has a monomorphic flat envelope and the class of flat modules is coresolving. We firstly give a characterization of copure projective and cotorsion modules by lifting and extension diagrams, which implies that the classes of copure projective and cotorsion modules have some balanced properties. Then, a relative right derived functor is introduced to investigate copure projective and cotorsion dimensions of modules. As applications, some new characterizations of QF rings, perfect rings and noetherian rings are given.
Abstract
In 1971 Onnewer and Waterman establish a sufficient condition which guarantees uniform convergence of Vilenkin-Fourier series of continuous function. In this paper we consider different classes of functions of generalized bounded oscillation and in the terms of these classes there are established sufficient conditions for uniform convergence of Cesàro means of negative order.
Abstract
In [3], a universal linear algebraic model was proposed for describing homogeneous conformal geometries, such as the spherical, Euclidean, hyperbolic, Minkowski, anti-de Sitter and Galilei planes ([6]). This formalism was independent from the underlying field, providing an extension and general approach to other fields, such as finite fields. Some steps were taken even for the characteristic 2 case.
In this article, we undertake the study of the characteristic 2 case in more detail. In particular, the concept of virtual quadratic spaces is used ([4]), and a similar result is achieved for finite fields of characteristic 2 as for other fields. Some differences from the non-characteristic 2 case are also pointed out.
Abstract
In this note connections between root extensions of monoids and some finiteness conditions on monoids are studied, giving new proofs and generalizing results of Etingof, Malcolmson and Okoh for domains. In the same spirit, results of Jedrzejewicz and Zielinski on root-closed extensions of domains are generalized and sharpened to monoids. Using the same methods, a criterion for being a completely integrally closed domain is generalized to monoids.
Abstract
In this paper first, we prove some new generalizations of Hermite-Hadamard type inequalities for the convex function f and for (s, m)-convex function f in the second sense in conformable fractional integral forms. Second, by using five new integral identities, we present some new Riemann-Liouville fractional trapezoid and midpoint type inequalities. Third, using these results, we present applications to f-divergence measures. At the end, some new bounds for special means of different positive real numbers and new error estimates for the trapezoidal and midpoint formula are provided as well. These results give us the generalizations of the earlier results.
High proved the following theorem. If the intersections of any two congruent copies of a plane convex body are centrally symmetric, then this body is a circle. In our paper we extend the theorem of High to spherical, Euclidean and hyperbolic spaces, under some regularity assumptions. Suppose that in any of these spaces there is a pair of closed convex sets of class C + 2 with interior points, different from the whole space, and the intersections of any congruent copies of these sets are centrally symmetric (provided they have non-empty interiors). Then our sets are congruent balls. Under the same hypotheses, but if we require only central symmetry of small intersections, then our sets are either congruent balls, or paraballs, or have as connected components of their boundaries congruent hyperspheres (and the converse implication also holds).
Under the same hypotheses, if we require central symmetry of all compact intersections, then either our sets are congruent balls or paraballs, or have as connected components of their boundaries congruent hyperspheres, and either d ≥ 3, or d = 2 and one of the sets is bounded by one hypercycle, or both sets are congruent parallel domains of straight lines, or there are no more compact intersections than those bounded by two finite hypercycle arcs (and the converse implication also holds).
We also prove a dual theorem. If in any of these spaces there is a pair of smooth closed convex sets, such that both of them have supporting spheres at any of their boundary points S d for Sd of radius less than π/2- and the closed convex hulls of any congruent copies of these sets are centrally symmetric, then our sets are congruent balls.
In this article, a new four-parameter model is introduced which can be used in mod- eling survival data and fatigue life studies. Its failure rate function can be increasing, decreasing, upside down and bathtub-shaped depending on its parameters. We derive explicit expressions for some of its statistical and mathematical quantities. Some useful characterizations are presented. Maximum likelihood method is used to estimate the model parameters. The censored maximum likelihood estimation is presented in the general case of the multi-censored data. We demonstrate empirically the importance and exibility of the new model in modeling a real data set.
In this paper, we proved theorems which give the conditions that special operator nets on a predual of von Neumann algebras are strongly convergent under the Markov case. Moreover, we investigate asymptotic stability and existence of a lower-bound function for such nets.
Reconstruction theorems for martingales with respect to regular filtration are proved provided that the majorant of the martingale satisfies some specified condition. The ob-tained results are applied to obtain formulas for restoration of coeffcients for multiple Haar series.
For fixed integers n(= 0) and μ, the number of ways in which a moving particle taking a horizontal step with probability p and a vertical step with probability q, touches the line Y = n+μX for the first time, have been counted. The concept has been applied to obtain various probability distributions in independent and Markov dependent trials.
We discuss the weakly compact subsets of direct sum cones for the upper, lower and symmetric topologies and investigate the X-topologies of the weak upper, lower and sym-metric compact subsets of direct sum cones on product cones.
Any sequence of 4-dimensional cubes of total volume not greater than 1/8 can be online packed into the unit cube.
In this paper we formulate and prove that there exists the first positive eigenvalue of the eigenvalue problem with oblique derivative for the Laplace-Beltrami operator on the unit sphere. The firrst eigenvalue plays a major role in studying the asymptotic behaviour of solutions of oblique derivative problems in cone-like domains. Our work is motivated by the fact that the precise solutions decreasing rate near the boundary conical point is dependent on the first eigenvalue.
In this paper, we introduce comatrix group corings and define the generalized Galois group corings. Then we give the generalized Galois group coring Structure Theorem.
In present paper, we give some new reverses of the Young type inequalities which were established by X. Hu and J. Xue [7] via Kantorovich constant. Then we apply these inequalities to establish corresponding inequalities for the Hilbert-Schmidt norm and the trace norm.
Let L(f, r) denote the length of the closed curve which is the image of |z| = r < 1 under the mapping w = f(z). We establish some sufficient conditions for L(f, r) to be bounded and for f(z) to in the classes of strongly close-to-convex function of order α and to be strongly Bazilevič function of type β of order α. Moreover, we prove an inequality connected with the Fejér-Riesz's inequality.
We characterize the normal distribution based on the Q-independence of linear forms based on infinite sequences of Q-independent random variables.
In this paper we obtain some new power and hölder type trace inequalities for positive operators in Hilbert spaces. As tools, we use some recent reverses and refinements of Young inequality obtained by several authors.
Let R be a commutative Noetherian ring, M a finitely generated R-module, I an ideal of R and N a submodule of M such that IM ⫅ N. In this paper, the primary decomposition and irreducible decomposition of ideal I × N in the idealization of module R ⋉ M are given. From theses we get the formula for associated primes of R ⋉ M and the index of irreducibility of 0 R ⋉ M .
The notion of core inverse was introduced by Baksalary and Trenkler for a complex matrix of index 1. Recently, the notion of pseudo core inverse extended the notion of core inverse to an element of an arbitrary index in *-rings; meanwhile, it characterized the core-EP inverse introduced by Manjunatha Prasad and Mohana for complex matrices, in terms of three equations. Many works have been done on classical generalized inverses of companion matrices and Toeplitz matrices. In this paper, we discuss existence criteria and formulae of the pseudo core inverse of a companion matrix over a *-ring. A {1,3}-inverse of a Toeplitz matrix plays an important role in that process.
If a Banach-space operator has a complemented range, then its normed-space adjoint has a complemented kernel and the converse holds on a re exive Banach space. It is also shown when complemented kernel for an operator is equivalent to complemented range for its normed-space adjoint. This is applied to compact operators and to compact perturbations. In particular, compact perturbations of semi-Fredholm operators have complemented range and kernel for both the perturbed operator and its normed-space adjoint.
Some Erdős-Ko-Rado type extremal properties of families of vectors from {-1; 0; 1}n are considered.
We find upper and lower bounds for the probability of a union of events which generalize the well-known Chung-Erdős inequality. Moreover, we will show monotonicity of the bounds.
Given an integer k ≧ 2 and a real number γ ∈ [0; 1], which graphs of edge density γ contain the largest number of k-edge stars? For k = 2 Ahlswede and Katona proved that asymptotically there cannot be more such stars than in a clique or in the complement of a clique (depending on the value of γ). Here we extend their result to all integers k ≧ 2.
It is proved that the set of all idempotent operations defined on a given set forms a Menger algebra which can be characterized by its densely embedded v-ideal. We also describe automorphisms of this algebra.
A ring R has the (A)-property (resp., strong (A)-property) if every finitely generated ideal of R consisting entirely of zero divisors (resp., every finitely generated ideal of R generated by a finite number of zero-divisors elements of R) has a nonzero annihilator. The class of commutative rings with property (A) is quite large; for example, Noetherian rings, rings whose prime ideals are maximal, the polynomial ring R[x] and rings whose total ring of quotients are von Neumann regular. Let f : A → B be a ring homomorphism and J be an ideal of B. In this paper, we investigate when the (A)-property and strong (A)-property are satisfied by the amalgamation of rings denoted by A ⋈f J, introduced by D'Anna, Finocchiaro and Fontana in [3]. Our aim is to construct new original classes of (A)-rings that are not strong (A)-rings, (A)-rings that are not Noetherian and (A)-rings whose total ring of quotients are not Von Neumann regular rings.
In this paper, a class S s (q) of close-to-convex functions is considered. Among the results studied for this class are its various characteristic properties such as the radius of convexity, certain bounds and coeffcient estimates. A suffcient condition for a function f to be in the class S s (q), is also obtained.
Multiplicative inverse transversals of regular semigroups were introduced by Blyth and McFadden in 1982. Since then, regular semigroups with an inverse transversal and their generalizations, such as regular semigroups with an orthodox transversal and abundant semigroups with an ample transversal, are investigated extensively in literature. On the other hand, restriction semigroups are generalizations of inverse semigroups in the class of non-regular semigroups. In this paper we initiate the investigations of E-semiabundant semigroups by using the ideal of "transversals". More precisely, we first introduce multiplicative restriction transversals for E-semiabundant semigroups and obtain some basic properties of E-semiabundant semigroups containing a multiplicative restriction transver- sal. Then we provide a construction method for E-semiabundant semigroups containing a multiplicative restriction transversal by using the Munn semigroup of an admissible quadruple and a restriction semigroup under some natural conditions. Our construction is similar to Hall's spined product construction of an orthodox semigroup. As a corollary, we obtain a new construction of a regular semigroup with a multiplicative inverse transversal and an abundant semigroup having a multiplicative ample transversal, which enriches the corresponding results obtained by Blyth-McFadden and El-Qallali, respectively.
In the Euclidean plane, the Erdős-Mordell inequality indicates that the sum of distances of an interior point of a triangle T to its vertices is larger than or equal to twice the sum of distances to the sides of T. We extend this theorem to arbitrary (normed or) Minkowski planes, and we generalize in an analogous way some other related inequalities, e.g. referring to polygons. We also derive Minkowskian analogues of Erdős-Mordell inequalities for tetrahedra and n-dimensional simplices. Finally, some related inequalities are obtained which additionally involve total edge-lengths of simplices.
We analyze the strong polarized partition relation with respect to several cardinal characteristics and forcing notions of the reals. We prove that random reals (as well as the existence of real-valued measurable cardinals) yield downward negative polarized relations.
Clean integral 2 × 2 matrices are characterized. Up to similarity the strongly clean matrices are completely determined and large classes of uniquely clean matrices are found. In particular, classes of uniquely clean matrices which are not strongly clean are found.
This paper is devoted to study the following Schrödinger-Poisson system where λ is a positive parameter, a ∈ C(R3,R+) has a bounded potential well Ω = a −1(0), b ∈ C(R3, R) is allowed to be sign-changing, K ∈ C(R3, R+) and f ∈ C(R, R). Without the monotonicity of f(t)=/|t|3 and the Ambrosetti-Rabinowitz type condition, we establish the existence and exponential decay of positive multi-bump solutions of the above system for , and obtain the concentration of a family of solutions as λ →+∞, where is determined by terms of a, b, K and f. Our results improve and generalize the ones obtained by C. O. Alves, M. B. Yang [3] and X. Zhang, S. W. Ma [38].
Let R be a ring with an endomorphism σ and F ∪ {0} the free monoid generated by U = {u 1, ..., ut } with 0 added, and M = F ∪ {0}/(I) where I is the set of certain monomial in U such that M n = 0, for some n. Then we can form the non-semiprime skew monoid ring R[M; σ]. An element a ∈ R is uniquely strongly clean if a has a unique expression as a = e + u, where e is an idempotent and u is a unit with ea = ae. We show that a σ-compatible ring R is uniquely clean if and only if R[M; σ] is a uniquely clean ring. If R is strongly π-regular and uniquely strongly clean, then R[M; σ] is uniquely strongly clean. It is also shown that idempotents of R[M; σ] (and hence the ring R[x; σ]=(x n )) are conjugate to idempotents of R and we apply this to show that R[M; σ] over a projective-free ring R is projective-free. It is also proved that if R is semi-abelian and σ(e) = e for each idempotent e ∈ R, then R[M; σ] is a semi-abelian ring.
We exhibit a general family of distributions named “Kumaraswamy odd Burr G family of distributions” with four additional parameters to generalize any existing baseline distribution. Some statistical properties of the family are derived, including r th moments, m th incomplete moments, moment generating function and entropies. The parameters of the family are estimated by the maximum likelihood (ML) method for complete sam- ples as well as censored samples. Some sub-models of the family are considered and it is noted that their density functions can be symmetric, left-skewed, right-skewed, unimodal, bimodal and their hazard rate functions can be increasing, decreasing, bathtub, upside- down bathtub and J-shaped. Simulation is carried out for one of the sub-models to check the asymptotic behavior of the ML estimates. Applications to reliability (complete and censored) data are carried out to check the usefulness of some sub-models of the family.
We study point processes associated with coupon collector’s problem, that are defined as follows. We draw with replacement from the set of the first n positive integers until all elements are sampled, assuming that all elements have equal probability of being drawn. The point process we are interested in is determined by ordinal numbers of drawing elements that didn’t appear before. The set of real numbers is considered as the state space. We prove that the point process obtained after a suitable linear transformation of the state space converges weakly to the limiting Poisson random measure whose mean measure is determined.
We also consider rates of convergence in certain limit theorems for the problem of collecting pairs.