Browse Our Mathematics and Statistics Journals
Mathematics and statistics journals publish papers on the theory and application of mathematics, statistics, and probability. Most mathematics journals have a broad scope that encompasses most mathematical fields. These commonly include logic and foundations, algebra and number theory, analysis (including differential equations, functional analysis and operator theory), geometry, topology, combinatorics, probability and statistics, numerical analysis and computation theory, mathematical physics, etc.
Mathematics and Statistics
Abstract
The growth rate of scientific publication has been studied from 1907 to 2007 using available data from a number of literature databases, including Science Citation Index (SCI) and Social Sciences Citation Index (SSCI). Traditional scientific publishing, that is publication in peer-reviewed journals, is still increasing although there are big differences between fields. There are no indications that the growth rate has decreased in the last 50 years. At the same time publication using new channels, for example conference proceedings, open archives and home pages, is growing fast. The growth rate for SCI up to 2007 is smaller than for comparable databases. This means that SCI was covering a decreasing part of the traditional scientific literature. There are also clear indications that the coverage by SCI is especially low in some of the scientific areas with the highest growth rate, including computer science and engineering sciences. The role of conference proceedings, open access archives and publications published on the net is increasing, especially in scientific fields with high growth rates, but this has only partially been reflected in the databases. The new publication channels challenge the use of the big databases in measurements of scientific productivity or output and of the growth rate of science. Because of the declining coverage and this challenge it is problematic that SCI has been used and is used as the dominant source for science indicators based on publication and citation numbers. The limited data available for social sciences show that the growth rate in SSCI was remarkably low and indicate that the coverage by SSCI was declining over time. National Science Indicators from Thomson Reuters is based solely on SCI, SSCI and Arts and Humanities Citation Index (AHCI). Therefore the declining coverage of the citation databases problematizes the use of this source.
Abstract
This paper focuses on the study of self-citations at the meso and micro (individual) levels, on the basis of an analysis of the production (1994–2004) of individual researchers working at the Spanish CSIC in the areas of Biology and Biomedicine and Material Sciences. Two different types of self-citations are described: author self-citations (citations received from the author him/herself) and co-author self-citations (citations received from the researchers’ co-authors but without his/her participation). Self-citations do not play a decisive role in the high citation scores of documents either at the individual or at the meso level, which are mainly due to external citations. At micro-level, the percentage of self-citations does not change by professional rank or age, but differences in the relative weight of author and co-author self-citations have been found. The percentage of co-author self-citations tends to decrease with age and professional rank while the percentage of author self-citations shows the opposite trend. Suppressing author self-citations from citation counts to prevent overblown self-citation practices may result in a higher reduction of citation numbers of old scientists and, particularly, of those in the highest categories. Author and co-author self-citations provide valuable information on the scientific communication process, but external citations are the most relevant for evaluative purposes. As a final recommendation, studies considering self-citations at the individual level should make clear whether author or total self-citations are used as these can affect researchers differently.
Abstract
A term map is a map that visualizes the structure of a scientific field by showing the relations between important terms in the field. The terms shown in a term map are usually selected manually with the help of domain experts. Manual term selection has the disadvantages of being subjective and labor-intensive. To overcome these disadvantages, we propose a methodology for automatic term identification and we use this methodology to select the terms to be included in a term map. To evaluate the proposed methodology, we use it to construct a term map of the field of operations research. The quality of the map is assessed by a number of operations research experts. It turns out that in general the proposed methodology performs quite well.
Abstract
Several individual indicators from the Times Higher Education Survey (THES) data base—the overall score, the reported staff-to-student ratio, and the peer ratings—demonstrate unacceptably high fluctuation from year to year. The inappropriateness of the summary tabulations for assessing the majority of the “top 200” universities would be apparent purely for reason of this obvious statistical instability regardless of other grounds of criticism. There are far too many anomalies in the change scores of the various indices for them to be of use in the course of university management.
Abstract
This paper revisits an aspect of citation theory (i.e., citer motivation) with respect to the Mathematical Review system and the reviewer’s role in mathematics. We focus on a set of journal articles (369) published in Singularity Theory (1974–2003), the mathematicians who wrote editorial reviews for these articles, and the number of citations each reviewed article received within a 5 year period. Our research hypothesis is that the cognitive authority of a high status reviewer plays a positive role in how well a new article is received and cited by others. Bibliometric evidence points to the contrary: Singularity Theorists of lower status (junior researchers) have reviewed slightly more well-cited articles (2–5 citations, excluding author self-citations) than their higher status counterparts (senior researchers). One explanation for this result is that lower status researchers may have been asked to review ‘trendy’ or more accessible parts of mathematics, which are easier to use and cite. We offer further explanations and discuss a number of implications for a theory of citation in mathematics. This research opens the door for comparisons to other editorial review systems, such as book reviews written in the social sciences or humanities.
Abstract
Many investigations of scientific collaboration are based on statistical analyses of large networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustrate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a relatively small network of scientific collaboration (N = 291) constructed from the bibliographic record of a research centerin the development and application of wireless and sensor network technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortative mixing of selected node characteristics, unveiling the researchers’ propensity to collaborate preferentially with others with a similar academic profile. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.
Abstract
We present VOSviewer, a freely available computer program that we have developed for constructing and viewing bibliometric maps. Unlike most computer programs that are used for bibliometric mapping, VOSviewer pays special attention to the graphical representation of bibliometric maps. The functionality of VOSviewer is especially useful for displaying large bibliometric maps in an easy-to-interpret way. The paper consists of three parts. In the first part, an overview of VOSviewer’s functionality for displaying bibliometric maps is provided. In the second part, the technical implementation of specific parts of the program is discussed. Finally, in the third part, VOSviewer’s ability to handle large maps is demonstrated by using the program to construct and display a co-citation map of 5,000 major scientific journals.
Abstract
Bibliometric counting methods need to be validated against perceived notions of authorship credit allocation, and standardized by rejecting methods with poor fit or questionable ethical implications. Harmonic counting meets these concerns by exhibiting a robust fit to previously published empirical data from medicine, psychology and chemistry, and by complying with three basic ethical criteria for the equitable sharing of authorship credit. Harmonic counting can also incorporate additional byline information about equal contribution, or the elevated status of a corresponding last author. By contrast, several previously proposed counting schemes from the bibliometric literature including arithmetic, geometric and fractional counting, do not fit the empirical data as well and do not consistently meet the ethical criteria. In conclusion, harmonic counting would seem to provide unrivalled accuracy, fairness and flexibility to the long overdue task of standardizing bibliometric allocation of publication and citation credit.
Abstract
In this study the amount of “informal” citations (i.e. those mentioning only author names or their initials instead of the complete references) in comparison to the “formal” (full reference based) citations is analyzed using some pioneers of chemistry and physics as examples. The data reveal that the formal citations often measure only a small fraction of the overall impact of seminal publications. Furthermore, informal citations are mainly given instead of (and not in addition to) formal citations. As a major consequence, the overall impact of pioneering articles and researchers cannot be entirely determined by merely counting the full reference based citations.
Abstract
An individual’s h-index corresponds to the number h of his/her papers that each has at least h citations. When the citation count of an article exceeds h, however, as is the case for the hundreds or even thousands of citations that accompany the most highly cited papers, no additional credit is given (these citations falling outside the so-called “Durfee square”). We propose a new bibliometric index, the “tapered h-index” (h T), that positively enumerates all citations, yet scoring them on an equitable basis with h. The career progression of h T and h are compared for six eminent scientists in contrasting fields. Calculated h T for year 2006 ranged between 44.32 and 72.03, with a corresponding range in h of 26 to 44. We argue that the h T-index is superior to h, both theoretically (it scores all citations), and because it shows smooth increases from year to year as compared with the irregular jumps seen in h. Conversely, the original h-index has the benefit of being conceptually easy to visualise. Qualitatively, the two indices show remarkable similarity (they are closely correlated), such that either can be applied with confidence.