Browse Our Mathematics and Statistics Journals

Mathematics and statistics journals publish papers on the theory and application of mathematics, statistics, and probability. Most mathematics journals have a broad scope that encompasses most mathematical fields. These commonly include logic and foundations, algebra and number theory, analysis (including differential equations, functional analysis and operator theory), geometry, topology, combinatorics, probability and statistics, numerical analysis and computation theory, mathematical physics, etc.

Mathematics and Statistics

You are looking at 81 - 90 of 164 items for

  • Refine by Access: Content accessible to me x
Clear All

The ultrapower T* of an arbitrary ordered set T is introduced as an infinitesimal extension of T. It is obtained as the set of equivalence classes of the sequences in T, where the corresponding relation is generated by a free ultrafilter on the set of natural numbers. It is established that T* always satisfies Cantor’s property, while one can give the necessary and sufficient conditions for T so that T* would be complete or it would fulfill the open completeness property, respectively. Namely, the density of the original set determines the open completeness of the extension, while independently, the completeness of T* is determined by the cardinality of T.

Open access

We prove a theorem on the preservation of inequalities between functions of a special form after differentiation on an ellipse. In particular, we obtain generalizations of the Duffin–Schaeffer inequality and the Vidensky inequality for the first and second derivatives of algebraic polynomials to an ellipse.

Open access

In this paper we work out a Riemann–von Mangoldt type formula for the summatory function ψ x := g G , g x Λ G g , where G is an arithmetical semigroup (a Beurling generalized system of integers) and Λ G is the corresponding von Mangoldt function attaining l o g p   f o r   g   = p k with a prime element p G and zero otherwise. On the way towards this formula, we prove explicit estimates on the Beurling zeta function ζ G , belonging to G , to the number of zeroes of ζ G in various regions, in particular within the critical strip where the analytic continuation exists, and to the magnitude of the logarithmic derivative of ζ G , under the sole additional assumption that Knopfmacher’s Axiom A is satisfied. We also construct a technically useful broken line contour to which the technic of integral transformation can be well applied. The whole work serves as a first step towards a further study of the distribution of zeros of the Beurling zeta function, providing appropriate zero density and zero clustering estimates, to be presented in the continuation of this paper.

Open access

A congruence is defined for a matroid. This leads to suitable versions of the algebraic isomorphism theorems for matroids. As an application of the congruence theory for matroids, a version of Birkhoff’s Theorem for matroids is given which shows that every nontrivial matroid is a subdirect product of subdirectly irreducible matroids.

Open access

Let (M, [g]) be a Weyl manifold and TM be its tangent bundle equipped with Riemannian g−natural metrics which are linear combinations of Sasaki, horizontal and vertical lifts of the base metric with constant coefficients. The aim of this paper is to construct a Weyl structure on TM and to show that TM cannot be Einstein-Weyl even if (M, g) is fiat.

Open access

We give all functions ƒ , E: ℕ → ℂ which satisfy the relation

ƒ ( a 2 + b 2 + c 2 + h )   = E ( a )   + E ( b )   + E ( c )   + K

for every a, b, c ∈ ℕ, where h ≥ 0 is an integers and K is a complex number. If n cannot be written as a2 + b2 + c2 + h for suitable a, b, c ∈ ℕ, then ƒ (n) is not determined. This is more complicated if we assume that ƒ and E are multiplicative functions.

Open access

In this article, we study a fractional control problem that models the maximization of the profit obtained by exploiting a certain resource whose dynamics are governed by the fractional logistic equation. Due to the singularity of this problem, we develop different resolution techniques, both for the classical case and for the fractional case. We perform several numerical simulations to make a comparison between both cases.

Open access

The main aim of this paper is to prove that the nonnegativity of the Riesz’s logarithmic kernels with respect to the Walsh– Kaczmarz system fails to hold.

Open access

Binary groups are a meaningful step up from non-associative rings and nearrings. It makes sense to study them in terms of their nearrings of zero-fixing polynomial maps. As this involves algebras of a more specialized nature these are looked into in sections three and four. One of the main theorems of this paper occurs in section five where it is shown that a binary group V is a P 0(V) ring module if, and only if, it is a rather restricted form of non-associative ring. Properties of these non-associative rings (called terminal rings) are investigated in sections six and seven. The finite case is of special interest since here terminal rings of odd order really are quite restricted. Sections eight to thirteen are taken up with the study of terminal rings of order p n (p an odd prime and n ≥ 1 an integer ≤ 7).

Open access

Column-row products have zero determinant over any commutative ring. In this paper we discuss the converse. For domains, we show that this yields a characterization of pre-Schreier rings, and for rings with zero divisors we show that reduced pre-Schreier rings have this property.

Finally, for the rings of integers modulo n, we determine the 2x2 matrices which are (or not) full and their numbers.

Open access