Browse Our Mathematics and Statistics Journals

**Mathematics and statistics journals publish papers on the theory and application of mathematics, statistics, and probability. Most mathematics journals have a broad scope that encompasses most mathematical fields. These commonly include logic and foundations, algebra and number theory, analysis (including differential equations, functional analysis and operator theory), geometry, topology, combinatorics, probability and statistics, numerical analysis and computation theory, mathematical physics, etc.**

# Mathematics and Statistics

We prove zero density theorems for Dedekind zeta functions in the vicinity of the line Re *s* = 1, improving an earlier result of W. Staś.

A positive integer _{𝑖} ∣ 𝑛_{𝑖} for all prime divisors 𝑝_{𝑖} of 𝑛. In addition, 1 is an e-divisor of 1. It is easy to see that ℤ_{+} is a poset under the e-divisibility relation. Utilizing this observation we show that e-convolution of arithmetical functions is an example of the convolution of incidence functions of posets. We also note that the identity, units and the Möbius function are preserved in this process.

Let (𝑃_{𝑛})_{𝑛≥0} and (𝑄_{𝑛})_{𝑛≥0} be the Pell and Pell–Lucas sequences. Let 𝑏 be a positive integer such that 𝑏 ≥ 2. In this paper, we prove that the following two Diophantine equations 𝑃_{𝑛} = 𝑏^{𝑑}𝑃_{𝑚} + 𝑄_{𝑘} and 𝑃_{𝑛} = 𝑏^{𝑑}𝑄_{𝑚} + 𝑃_{𝑘} with 𝑑, the number of digits of 𝑃_{𝑘} or 𝑄_{𝑘} in base 𝑏, have only finitely many solutions in nonnegative integers (𝑚, 𝑛, 𝑘, 𝑏, 𝑑). Also, we explicitly determine these solutions in cases 2 ≤ 𝑏 ≤ 10.

Grätzer and Lakser asked in the 1971 *Transactions of the American Mathematical Society* if the pseudocomplemented distributive lattices in the amalgamation class of the subvariety generated by 𝟐^{𝑛} ⊕ 𝟏 can be characterized by the property of not having a *-homomorphism onto 𝟐^{𝑖} ⊕ 𝟏 for 1 < *𝑖* < *𝑛*.

In this article, their question from 1971 is answered.

This paper introduces and examines the concept of a *-Rickart *-ring, and proves that every Rickart *-ring is also a *-Rickart *-ring. A necessary and sufficient condition for a *-Rickart *-ring to be a Rickart *-ring is also provided. The relationship between *-Rickart *-rings and *-Baer *-rings is investigated, and several properties of *-Rickart *-rings are presented. The paper demonstrates that the property of *-Rickart extends to both the center and *-corners of a *-ring, and investigates the extension of a *-Rickart *-ring to its polynomial *-ring. Additionally, *-Rickart *-rings with descending chain condition on *-biideals are studied, and all *-Rickart (*-Baer) *-rings with finitely many elements are classified.

Very recently, the authors in [5] proposed the exponential-type operator connected with

A classical result of Dowker (Bull. Amer. Math. Soc. 50: 120-122, 1944) states that for any plane convex body 𝐾, the areas of the maximum (resp. minimum) area convex 𝑛-gons inscribed (resp. circumscribed) in 𝐾 is a concave (resp. convex) sequence. It is known that this theorem remains true if we replace area by perimeter, or convex 𝑛-gons by disk-𝑛-gons, obtained as the intersection of 𝑛 closed Euclidean unit disks. It has been proved recently that if 𝐶 is the unit disk of a normed plane, then the same properties hold for the area of 𝐶-𝑛-gons circumscribed about a 𝐶-convex disk 𝐾 and for the perimeters of 𝐶-𝑛-gons inscribed or circumscribed about a 𝐶-convex disk 𝐾, but for a typical origin-symmetric convex disk 𝐶 with respect to Hausdorff distance, there is a 𝐶-convex disk 𝐾 such that the sequence of the areas of the maximum area 𝐶-𝑛-gons inscribed in 𝐾 is not concave. The aim of this paper is to investigate this question if we replace the topology induced by Hausdorff distance with a topology induced by the surface area measure of the boundary of 𝐶.

In this paper, some basic characterizations of a weighted Bloch space with the differentiable strictly positive weight 𝜔 on the unit disc are given, including the growth, the higher order or free derivative descriptions, and integral characterizations of functions in the space.

We present examples of multiplicative semigroups of positive reals (Beurling’s generalized integers) with gaps bounded from below.

In this paper, we propose some new positive linear approximation operators, which are obtained from a composition of certain integral type operators with certain discrete operators. It turns out that the new operators can be expressed in discrete form. We provide representations for their coefficients. Furthermore, we study their approximation properties and determine their moment generating functions, which may be useful in finding several other convergence results in different settings.

Let 𝑓 be a normalized primitive cusp form of even integral weight for the full modular group Γ = 𝑆𝐿(2, ℤ). In this paper, we investigate upper bounds for the error terms related to the average behavior of Fourier coefficients 𝜆_{𝑓}
_{⊗𝑓 ⊗⋯⊗𝑙𝑓} (𝑛) of 𝑙-fold product 𝐿-functions, where 𝑓 ⊗ 𝑓 ⊗ ⋯ ⊗_{𝑙} 𝑓 denotes the 𝑙-fold product of 𝑓. These results improves and generalizes the recent developments of Venkatasubbareddy and Sankaranarayanan [41]. We also provide some other similar results related to the error terms of general product 𝐿-functions.

We apply a recent general zero density theorem of us (valid for a large class of complex functions) to improve earlier density theorems of Heath-Brown and Paul–Sankaranarayanan for Dedekind zeta functions attached to a number field *𝐾* of degree *𝑛* with *𝑛* > 2.

Asymptotic uniform upper density, shortened as a.u.u.d., or simply upper density, is a classical notion which was first introduced by Kahane for sequences in the real line.

Syndetic sets were defined by Gottschalk and Hendlund. For a locally compact group 𝐺, a set 𝑆 ⊂ 𝐺 is syndetic, if there exists a compact subset 𝐶 ⋐ 𝐺 such that 𝑆𝐶 = 𝐺. Syndetic sets play an important role in various fields of applications of topological groups and semigroups, ergodic theory and number theory. A lemma in the book of Fürstenberg says that once a subset 𝐴 ⊂ ℤ has positive a.u.u.d., then its difference set 𝐴 − 𝐴 is syndetic.

The construction of a reasonable notion of a.u.u.d. in general locally compact Abelian groups (LCA groups for short) was not known for long, but in the late 2000’s several constructions were worked out to generalize it from the base cases of ℤ^{𝑑} and ℝ^{𝑑}. With the notion available, several classical results of the Euclidean setting became accessible even in general LCA groups.

Here we work out various versions in a general locally compact Abelian group 𝐺 of the classical statement that if a set 𝑆 ⊂ 𝐺 has positive asymptotic uniform upper density, then the difference set 𝑆 − 𝑆 is syndetic.

Recently [3] we proved a general zero density theorem for a large class of functions which included among others the Riemann zeta function, Dedekind zeta functions, Dirichlet *𝐿*-functions. The goal of the present work is a (slight) improvement of this general theorem which might lead to stronger results in some applications.

This paper serves as a kick-off to address the question of how to define and investigate the stability of bi-continuous semigroups. We will see that the mixed topology is the key concept in this framework.

An endo-commutative algebra is a nonassociative algebra in which the square mapping preserves multiplication. In this paper, we give a complete classification of 2-dimensional endo-commutative straight algebras of rank one over an arbitrary non-trivial field, where a straight algebra of dimension 2 satisfies the condition that there exists an element *x* such that *x* and *x*
^{2} are linearly independent. We list all multiplication tables of the algebras up to isomorphism.

In this paper, we consider the simultaneous sign changes of coefficients of Rankin–Selberg *L*-functions associated to two distinct Hecke eigenforms supported at positive integers represented by some certain primitive reduced integral binary quadratic form with negative discriminant *D*. We provide a quantitative result for the number of sign changes of such sequence in the interval (*x*, 2*x*] for sufficiently large *x*.

In this paper, we derive several asymptotic formulas for the sum of *d*(gcd(*m,n*)), where *d*(*n*) is the divisor function and *m,n* are in Piatetski-Shapiro and Beatty sequences.

Let *𝑛* ∈ ℕ. An element (*x*
_{1}, … , *x*
_{𝑛}) ∈ *E ^{n}
* is called a

*norming point*of

*T*∈

*) if ‖*

^{n}E*x*

_{1}‖ = ⋯ = ‖

*x*‖ = 1 and |

_{n}*T*(

*x*

_{1}, … ,

*x*)| = ‖

_{n}*T*‖, where

*) denotes the space of all continuous*

^{n}E*n*-linear forms on

*E*. For

*T*∈

*), we define*

^{n}ENorm(*T*) = {(*x*
_{1}, … , *x*
_{n}) ∈ *E ^{n}
* ∶ (

*x*

_{1}, … ,

*x*

_{n}) is a norming point of

*T*}.

Norm(*T*) is called the *norming set* of *T*. We classify Norm(*T*) for every *T* ∈ ^{2}
*𝑑*
_{∗}(1, *w*)^{2}), where *𝑑*
_{∗}(1, *w*)^{2} = ℝ^{2} with the octagonal norm of weight 0 < *w* < 1 endowed with

In this paper, we introduce and study the class of *k*-strictly quasi-Fredholm linear relations on Banach spaces for nonnegative integer *k*. Then we investigate its robustness through perturbation by finite rank operators.

We construct an algebra of dimension 2^{ℵ0} consisting only of functions which in no point possess a finite one-sided derivative. We further show that some well known nowhere differentiable functions generate algebras, which contain functions which are differentiable at some points, but where for all functions in the algebra the set of points of differentiability is quite small.

A proper edge coloring of a graph 𝐺 is *strong* if the union of any two color classes does not contain a path with three edges (i.e. the color classes are *induced matchings*). The *strong chromatic index* 𝑞(𝐺) is the smallest number of colors needed for a strong coloring of 𝐺. One form of the famous (6, 3)-theorem of Ruzsa and Szemerédi (solving the (6, 3)-conjecture of Brown–Erdős–Sós) states that 𝑞(𝐺) cannot be linear in 𝑛 for a graph 𝐺 with 𝑛 vertices and 𝑐𝑛^{2} edges. Here we study two refinements of 𝑞(𝐺) arising from the analogous (7, 4)-conjecture. The first is 𝑞_{𝐴}(𝐺), the smallest number of colors needed for a proper edge coloring of 𝐺 such that the union of any two color classes does not contain a path or cycle with four edges, we call it an *A-coloring*. The second is 𝑞_{𝐵}(𝐺), the smallest number of colors needed for a proper edge coloring of 𝐺 such that all four-cycles are colored with four different colors, we call it a *B-coloring*. These notions lead to two stronger and one equivalent form of the (7, 4)-conjecture in terms of 𝑞_{𝐴}(𝐺), 𝑞_{𝐵}(𝐺) where 𝐺 is a balanced bipartite graph. Since these are questions about graphs, perhaps they will be easier to handle than the original ^{special}(7, 4)-conjecture. In order to understand the behavior of _{𝑞}𝐴(𝐺) and _{𝑞}𝐵(𝐺), we study these parameters for some graphs.

We note that 𝑞_{𝐴}(𝐺) has already been extensively studied from various motivations. However, as far as we know the behavior of 𝑞_{𝐵}(𝐺) is studied here for the first time.

Over integral domains of characteristics different from 2, we determine all the matrices

We present generalizations of the Pinelis extension of Stolarsky’s inequality and its reverse. In particular, a new Stolarsky-type inequality is obtained. We study the properties of the linear functional related to the new Stolarsky-type inequality, and finally apply these new results in the theory of fractional integrals.

In this paper, we consider the Feuerbach point and the Feuerbach line of a triangle in the isotropic plane, and investigate some properties of these concepts and their relationships with other elements of a triangle in the isotropic plane. We also compare these relationships in Euclidean and isotropic cases.

We define the order of the double hypergeometric series, investigate the properties of the new confluent Kampé de Fériet series, and build systems of partial differential equations that satisfy the new Kampé de Fériet series. We solve the Cauchy problem for a degenerate hyperbolic equation of the second kind with a spectral parameter using the high-order Kampé de Fériet series. Thanks to the properties of the introduced Kampé de Fériet series, it is possible to obtain a solution to the problem in explicit forms.

Let 𝔼*
^{𝑑}
* denote the 𝑑-dimensional Euclidean space. The 𝑟-ball body generated by a given set in 𝔼

*is the intersection of balls of radius 𝑟 centered at the points of the given set. The author [Discrete Optimization 44/1 (2022), Paper No. 100539] proved the following Blaschke–Santaló-type inequalities for 𝑟-ball bodies: for all 0 <*

^{𝑑}*𝑘*<

*𝑑*and for any set of given 𝑑-dimensional volume in 𝔼

*the 𝑘-th intrinsic volume of the 𝑟-ball body generated by the set becomes maximal if the set is a ball. In this note we give a new proof showing also the uniqueness of the maximizer. Some applications and related questions are mentioned as well.*

^{𝑑}We discuss the outline of the shapes of graphs of χ ^{2} statistics for distributions of leading digits of irrational rotations under some conditions on *m*th convergent. We give some estimates of important coefficients *L _{k}
*’s, which determine the graphical shapes of χ

^{2}statistics. This means that the denominator

*q*of

_{m}*m*th convergent and the large partial quotient

*a*

_{m}_{+1}determine the outline of shapes of graphs, when we observe values of χ

^{2}statistics with step

*q*.

_{m}In this note, we introduce the concept of semi-*-IFP, the involutive version of semi-IFP, which is a generalization of quasi-*-IFP and *-reducedness of *-rings. We study the basic structure and properties of *-rings having semi-*-IFP and give results for IFPs in rings with involution. Several results and counterexamples are stated to connect the involutive versions of IFP. We discuss the conditions for the involutive IFPs to be extended into *-subrings of the ring of upper triangular matrices. In *-rings with quasi-*-IFP, it is shown that Köthe’s conjecture has a strong affirmative solution. We investigate its related properties and the relationship between *-rings with quasi-*-IFP and *-Armendariz properties.

In the present paper, we establish the convergence rates of the single logarithm and the iterated logarithm for martingale differences which give some further results for the open question in Stoica [6].

Let *n* ∈ ℕ. An element (*x*
_{1}, … , *x _{n}
*) ∈

*E*is called a

^{n}*norming point*of

*n*-linear forms on

*E*. For

Norm(*T*) is called the *norming set* of *T*.

Let

In this paper, we classify Norm(*T*) for every

This article indicates another set-theoretic formula, solely in terms of union and intersection, for the set of the limits of any given sequence (net, in general) in an arbitrary *T*
_{1} space; this representation in particular gives a new characterization of a *T*
_{1} space.

We give all solutions of completely multiplicative functions ƒ , g, for which the equation *Ag*(*n* + 1) = *B*ƒ (*n*) + *C* holds for every *n* ∈ ℕ. We also study the equation *G*(*p* + 1) = *F*(*p* − 1) + *D* and we prove some results concerning it.

We consider a graph whose vertices are legally colored using *k* colors and ask if the graph contains a *k*-clique. As it turns out this very special type of *k*-clique problem is in an intimate connection with constructing schedules. The practicality this clique search based construction of schedules is checked by carrying out numerical experiments.

Assume that *A _{j}
*,

*j*∈ {1, … ,

*m*} are positive definite matrices of order

*n*. In this paper we prove among others that, if 0 <

*l I*≤

_{n}*A*,

_{j}*j*∈ {1, … ,

*m*} in the operator order, for some positive constant

*l*, and

*I*is the unity matrix of order

_{n}*n*, then

where *Pk* ≥ 0 for *k* ϵ {1, …, *m*} and

The evolute of a conic in the pseudo-Euclidean plane is the locus of centers of all its osculating circles. It’s a curve of order six and class four in general case. In this paper we discuss and compute the order and class of evolutes of different types of conics. We will highlight those cases that have no analogy in the Euclidean plane.

Fast [12] is credited with pioneering the field of statistical convergence. This topic has been researched in many spaces such as topological spaces, cone metric spaces, and so on (see, for example [19, 21]). A cone metric space was proposed by Huang and Zhang [17]. The primary distinction between a cone metric and a metric is that a cone metric is valued in an ordered Banach space. Li et al. [21] investigated the definitions of statistical convergence and statistical boundedness of a sequence in a cone metric space. Recently, Sakaoğlu and Yurdakadim [29] have introduced the concepts of quasi-statistical convergence. The notion of quasi I-statistical convergence for triple and multiple index sequences in cone metric spaces on topological vector spaces is introduced in this study, and we also examine certain theorems connected to quasi I-statistically convergent multiple sequences. Finally, we will provide some findings based on these theorems.

For a graph *G*, we define the lower bipartite number LB(*G*) as the minimum order of a maximal induced bipartite subgraph of *G*. We study the parameter, and the related parameter bipartite domination, providing bounds both in general graphs and in some graph families. For example, we show that there are arbitrarily large 4-connected planar graphs *G* with LB(*G*) = 4 but a 5-connected planar graph has linear LB(*G*). We also show that if *G* is a maximal outerplanar graph of order *n*, then LB(*G*) lies between (*n* + 2)/3 and 2 *n*/3, and these bounds are sharp.

We study the path behavior of the symmetric walk on some special comb-type subsets of ℤ^{2} which are obtained from ℤ^{2} by generalizing the comb having finitely many horizontal lines instead of one.

In a typical maximum clique search algorithm when optimality testing is inconclusive a forking takes place. The instance is divided into smaller ones. This is the branching step of the procedure. In order to ensure a balanced work load for the processors for parallel algorithms it is essential that the resulting smaller problems are do not overly vary in difficulty. The so-called splitting partitions of the nodes of the given graph were introduced earlier to meliorate this problem. The paper proposes a splitting partition of the edges for the same purpose. In the lack of available theoretical tools we assess the practical feasibility of constructing suboptimal splitting edge partitions by carrying out numerical experiments. While working with splitting partitions we have realized that they can be utilized as preconditioning tools preliminary to a large scale clique search. The paper will discuss this new found role of the splitting edge partitions as well.

In this paper, we introduce the notion of a Gel’fand Γ-semiring and discuss the various characterization of simple, *k*-ideal, strong ideal, *t*-small elements and additively cancellative elements of a Gel’fand Γ-semiring *R*, and prove that the set of additively cancellative elements, set of all *t*-small elements of *R* and set of all maximal ideal of *R* are strong ideals. Further, let *R* be a simple Gel’fand Γ-semiring and 1 ≠ *t* ∈ *R*. Let *M* be the set of all maximal left (right) ideals of *R*. Then an element *x* of *R* is *t*-small if and only if it belongs to every maximal one sided left (right)ideal of *R* containing *t*.

For a continuous and positive function *w*(λ), *λ >
* 0 and

*μ*a positive measure on (0, ∞) we consider the following

*integral transform*

where the integral is assumed to exist for *t* > 0.

We show among others that *D*(*w, μ*) is operator convex on (0, ∞). From this we derive that, if *f* : [0, ∞) → **R** is an operator monotone function on [0, ∞), then the function [*f*(0) -*f*(*t*)] *t*
^{-1} is operator convex on (0, ∞). Also, if *f* : [0, ∞) → **R** is an operator convex function on [0, ∞), then the function

under some natural assumptions for the positive operators A and B are given. Examples for power, exponential and logarithmic functions are also provided.

Problem 2 of Welsh’s 1976 text *Matroid Theory*, asking for criteria telling when two families of sets have a common transversal, is solved.

Another unsolved problem in the text *Matroid Theory*, on whether the “join” of two non-decreasing submodular functions is submodular, is answered in the negative. This resolves an issue first raised by Pym and Perfect in 1970.

This manuscript deals with the global existence and asymptotic behavior of solutions for a Kirchhoff beam equation with internal damping. The existence of solutions is obtained by using the Faedo-Galerkin method. Exponential stability is proved by applying Nakao’s theorem.

We consider hypersphere x = x(*u, v, w*) in the four dimensional Euclidean space. We calculate the Gauss map, and the curvatures of it. Moreover, we compute the second Laplace-Beltrami operator the hypersphere satisfying Δ^{II}x = *A*x, where *A* ϵ *Mat* (4,4).

In this paper, we show a Marcinkiewicz type interpolation theorem for Orlicz spaces. As an application, we obtain an existence result for a parabolic equation in divergence form.

Let *E, G* be Fréchet spaces and *F* be a complete locally convex space. It is observed that the existence of a continuous linear not almost bounded operator *T* on *E* into *F* factoring through *G* causes the existence of a common nuclear Köthe subspace of the triple (*E, G, F*). If, in addition, *F* has the property (*y*), then (*E, G, F*) has a common nuclear Köthe quotient.

In this paper we study the sum *n*, and {*n _{p}
*} is a sequence of integers indexed by primes. Under certain assumptions we show that the aforementioned sum is

In this paper we derive new inequalities involving the generalized Hardy operator. The obtained results generalized known inequalities involving the Hardy operator. We also get new inequalities involving the classical Hardy–Hilbert inequality.