Browse Our Mathematics and Statistics Journals

Mathematics and statistics journals publish papers on the theory and application of mathematics, statistics, and probability. Most mathematics journals have a broad scope that encompasses most mathematical fields. These commonly include logic and foundations, algebra and number theory, analysis (including differential equations, functional analysis and operator theory), geometry, topology, combinatorics, probability and statistics, numerical analysis and computation theory, mathematical physics, etc.

Mathematics and Statistics

You are looking at 1 - 50 of 126 items for

  • Refine by Access: Content accessible to me x
Clear All

Grätzer and Lakser asked in the 1971 Transactions of the American Mathematical Society if the pseudocomplemented distributive lattices in the amalgamation class of the subvariety generated by 2 n ⊕ 1 can be characterized by the property of not having a * homomorphism onto 2 i ⊕ 1 for 1 < i < n.

In this article, this question is answered.

Open access

Over integral domains of characteristics different from 2, we determine all the matrices a b c d which are similar to c a d b .

Open access

We present generalizations of the Pinelis extension of Stolarsky’s inequality and its reverse. In particular, a new Stolarsky-type inequality is obtained. We study the properties of the linear functional related to the new Stolarsky-type inequality, and finally apply these new results in the theory of fractional integrals.

Open access

In this paper, we consider the Feuerbach point and the Feuerbach line of a triangle in the isotropic plane, and investigate some properties of these concepts and their relationships with other elements of a triangle in the isotropic plane. We also compare these relationships in Euclidean and isotropic cases.

Open access

We define the order of the double hypergeometric series, investigate the properties of the new confluent Kampé de Fériet series, and build systems of partial differential equations that satisfy the new Kampé de Fériet series. We solve the Cauchy problem for a degenerate hyperbolic equation of the second kind with a spectral parameter using the high-order Kampé de Fériet series. Thanks to the properties of the introduced Kampé de Fériet series, it is possible to obtain a solution to the problem in explicit forms.

Open access

Let 𝔼 𝑑 denote the 𝑑-dimensional Euclidean space. The 𝑟-ball body generated by a given set in 𝔼 𝑑 is the intersection of balls of radius 𝑟 centered at the points of the given set. The author [Discrete Optimization 44/1 (2022), Paper No. 100539] proved the following Blaschke–Santaló-type inequalities for 𝑟-ball bodies: for all 0 < 𝑘 < 𝑑 and for any set of given 𝑑-dimensional volume in 𝔼 𝑑 the 𝑘-th intrinsic volume of the 𝑟-ball body generated by the set becomes maximal if the set is a ball. In this note we give a new proof showing also the uniqueness of the maximizer. Some applications and related questions are mentioned as well.

Open access

We discuss the outline of the shapes of graphs of χ 2 statistics for distributions of leading digits of irrational rotations under some conditions on mth convergent. We give some estimates of important coefficients Lk ’s, which determine the graphical shapes of χ2 statistics. This means that the denominator qm of mth convergent and the large partial quotient am +1 determine the outline of shapes of graphs, when we observe values of χ 2 statistics with step qm .

Open access

In this note, we introduce the concept of semi-*-IFP, the involutive version of semi-IFP, which is a generalization of quasi-*-IFP and *-reducedness of *-rings. We study the basic structure and properties of *-rings having semi-*-IFP and give results for IFPs in rings with involution. Several results and counterexamples are stated to connect the involutive versions of IFP. We discuss the conditions for the involutive IFPs to be extended into *-subrings of the ring of upper triangular matrices. In *-rings with quasi-*-IFP, it is shown that Köthe’s conjecture has a strong affirmative solution. We investigate its related properties and the relationship between *-rings with quasi-*-IFP and *-Armendariz properties.

Open access

In the present paper, we establish the convergence rates of the single logarithm and the iterated logarithm for martingale differences which give some further results for the open question in Stoica [6].

Open access

Let n ∈ ℕ. An element (x 1, … , xn ) ∈ En is called a norming point of T L n E if x 1 = = x n = 1 and T x 1 , , x n = T , where L n E denotes the space of all continuous symmetric n-linear forms on E. For T L n E , we define

Norm T = x 1 , , x n E n : x 1 , , x n  is a norming of  T .

Norm(T) is called the norming set of T.

Let · 2 be the plane with a certain norm such that the set of the extreme points of its unit ball ext B · 2 = ± W 1 , ± W 2 for some W 1 ± W 2 · 2 .

In this paper, we classify Norm(T) for every T L n · 2 . We also present relations between the norming sets of L n l 2 and L n l 1 2 .

Open access

This article indicates another set-theoretic formula, solely in terms of union and intersection, for the set of the limits of any given sequence (net, in general) in an arbitrary T 1 space; this representation in particular gives a new characterization of a T 1 space.

Open access

We give all solutions of completely multiplicative functions ƒ , g, for which the equation Ag(n + 1) = Bƒ (n) + C holds for every n ∈ ℕ. We also study the equation G(p + 1) = F(p − 1) + D and we prove some results concerning it.

Open access

We consider a graph whose vertices are legally colored using k colors and ask if the graph contains a k-clique. As it turns out this very special type of k-clique problem is in an intimate connection with constructing schedules. The practicality this clique search based construction of schedules is checked by carrying out numerical experiments.

Open access

Assume that Aj , j ∈ {1, … , m} are positive definite matrices of order n. In this paper we prove among others that, if 0 < l In Aj , j ∈ {1, … , m} in the operator order, for some positive constant l, and In is the unity matrix of order n, then

o 1 2 k = 1 m P k 1 P k det 2 A j l I n 1 / 2 2 1 j < k m P j P k det A j + A k l I n 1 / 2 j = 1 m P j det A j 1 / 2 det k = 1 m P k A k 1 / 2 ,

where Pk ≥ 0 for k ϵ {1, …, m} and j = 1 m P j = 1 .

Open access

The evolute of a conic in the pseudo-Euclidean plane is the locus of centers of all its osculating circles. It’s a curve of order six and class four in general case. In this paper we discuss and compute the order and class of evolutes of different types of conics. We will highlight those cases that have no analogy in the Euclidean plane.

Open access

Fast [12] is credited with pioneering the field of statistical convergence. This topic has been researched in many spaces such as topological spaces, cone metric spaces, and so on (see, for example [19, 21]). A cone metric space was proposed by Huang and Zhang [17]. The primary distinction between a cone metric and a metric is that a cone metric is valued in an ordered Banach space. Li et al. [21] investigated the definitions of statistical convergence and statistical boundedness of a sequence in a cone metric space. Recently, Sakaoğlu and Yurdakadim [29] have introduced the concepts of quasi-statistical convergence. The notion of quasi I-statistical convergence for triple and multiple index sequences in cone metric spaces on topological vector spaces is introduced in this study, and we also examine certain theorems connected to quasi I-statistically convergent multiple sequences. Finally, we will provide some findings based on these theorems.

Open access

For a graph G, we define the lower bipartite number LB(G) as the minimum order of a maximal induced bipartite subgraph of G. We study the parameter, and the related parameter bipartite domination, providing bounds both in general graphs and in some graph families. For example, we show that there are arbitrarily large 4-connected planar graphs G with LB(G) = 4 but a 5-connected planar graph has linear LB(G). We also show that if G is a maximal outerplanar graph of order n, then LB(G) lies between (n + 2)/3 and 2 n/3, and these bounds are sharp.

Open access

We study the path behavior of the symmetric walk on some special comb-type subsets of ℤ2 which are obtained from ℤ2 by generalizing the comb having finitely many horizontal lines instead of one.

Open access

In a typical maximum clique search algorithm when optimality testing is inconclusive a forking takes place. The instance is divided into smaller ones. This is the branching step of the procedure. In order to ensure a balanced work load for the processors for parallel algorithms it is essential that the resulting smaller problems are do not overly vary in difficulty. The so-called splitting partitions of the nodes of the given graph were introduced earlier to meliorate this problem. The paper proposes a splitting partition of the edges for the same purpose. In the lack of available theoretical tools we assess the practical feasibility of constructing suboptimal splitting edge partitions by carrying out numerical experiments. While working with splitting partitions we have realized that they can be utilized as preconditioning tools preliminary to a large scale clique search. The paper will discuss this new found role of the splitting edge partitions as well.

Open access
Mathematica Pannonica
Authors:
Tilak Raj Sharma
and
Hitesh Kumar Ranote

In this paper, we introduce the notion of a Gel’fand Γ-semiring and discuss the various characterization of simple, k-ideal, strong ideal, t-small elements and additively cancellative elements of a Gel’fand Γ-semiring R, and prove that the set of additively cancellative elements, set of all t-small elements of R and set of all maximal ideal of R are strong ideals. Further, let R be a simple Gel’fand Γ-semiring and 1 ≠ tR. Let M be the set of all maximal left (right) ideals of R. Then an element x of R is t-small if and only if it belongs to every maximal one sided left (right)ideal of R containing t.

Open access

For a continuous and positive function w(λ), λ > 0 and μ a positive measure on (0, ∞) we consider the following integral transform

D w , μ t : = 0 w λ λ + t 1 d μ λ ,

where the integral is assumed to exist for t > 0.

We show among others that D(w, μ) is operator convex on (0, ∞). From this we derive that, if f : [0, ∞) → R is an operator monotone function on [0, ∞), then the function [f(0) -f(t)] t -1 is operator convex on (0, ∞). Also, if f : [0, ∞) → R is an operator convex function on [0, ∞), then the function f 0 + f + 0 t f t t 2 is operator convex on (0, ∞). Some lower and upper bounds for the Jensen’s difference

D w , μ A + D w , μ B 2 D w , μ A + B 2

under some natural assumptions for the positive operators A and B are given. Examples for power, exponential and logarithmic functions are also provided.

Open access

Problem 2 of Welsh’s 1976 text Matroid Theory, asking for criteria telling when two families of sets have a common transversal, is solved.

Another unsolved problem in the text Matroid Theory, on whether the “join” of two non-decreasing submodular functions is submodular, is answered in the negative. This resolves an issue first raised by Pym and Perfect in 1970.

Open access

This manuscript deals with the global existence and asymptotic behavior of solutions for a Kirchhoff beam equation with internal damping. The existence of solutions is obtained by using the Faedo-Galerkin method. Exponential stability is proved by applying Nakao’s theorem.

Open access

We consider hypersphere x = x(u, v, w) in the four dimensional Euclidean space. We calculate the Gauss map, and the curvatures of it. Moreover, we compute the second Laplace-Beltrami operator the hypersphere satisfying ΔIIx = Ax, where A ϵ Mat (4,4).

Open access

In this paper, we show a Marcinkiewicz type interpolation theorem for Orlicz spaces. As an application, we obtain an existence result for a parabolic equation in divergence form.

Open access

Let E, G be Fréchet spaces and F be a complete locally convex space. It is observed that the existence of a continuous linear not almost bounded operator T on E into F factoring through G causes the existence of a common nuclear Köthe subspace of the triple (E, G, F). If, in addition, F has the property (y), then (E, G, F) has a common nuclear Köthe quotient.

Open access

In this paper we study the sum p x   τ ( n p ) , where τ ( n ) denotes the number of divisors of n, and {np } is a sequence of integers indexed by primes. Under certain assumptions we show that the aforementioned sum is   x  as  x   . As an application, we consider the case where the sequence is given by the Fourier coefficients of a modular form.

Open access

In this paper we derive new inequalities involving the generalized Hardy operator. The obtained results generalized known inequalities involving the Hardy operator. We also get new inequalities involving the classical Hardy–Hilbert inequality.

Open access
Mathematica Pannonica
Authors:
Anna Bachstein
,
Wayne Goddard
, and
Michael A. Henning

The bipartite domination number of a graph is the minimum size of a dominating set that induces a bipartite subgraph. In this paper we initiate the study of this parameter, especially bounds involving the order, the ordinary domination number, and the chromatic number. For example, we show for an isolate-free graph that the bipartite domination number equals the domination number if the graph has maximum degree at most 3; and is at most half the order if the graph is regular, 4-colorable, or has maximum degree at most 5.

Open access

This short note deals with polynomial interpolation of complex numbers verifying a Lipschitz condition, performed on consecutive points of a given sequence in the plane. We are interested in those sequences which provide a bound of the error at the first uninterpolated point, depending only on its distance to the last interpolated one.

Open access

For a lattice L of finite length n, let RCSub(L) be the collection consisting of the empty set and those sublattices of L that are closed under taking relative complements. That is, a subset X of L belongs to RCSub(L) if and only if X is join-closed, meet-closed, and whenever {a, x, b} ⊆ S, yL, xy = a, and xy = b, then yS. We prove that (1) the poset RCSub(L) with respect to set inclusion is lattice of length n + 1, (2) if RCSub(L) is a ranked lattice and L is modular, then L is 2-distributive in András P. Huhn’s sense, and (3) if L is distributive, then RCSub(L) is a ranked lattice.

Open access

In this paper, centralizing (semi-centralizing) and commuting (semi-commuting) derivations of semirings are characterized. The action of these derivations on Lie ideals is also discussed and as a consequence, some significant results are proved. In addition, Posner’s commutativity theorem is generalized for Lie ideals of semirings and this result is also extended to the case of centralizing (semi-centralizing) derivations of prime semirings. Further, we observe that if there exists a skew-commuting (skew-centralizing) derivation D of S, then D = 0. It is also proved that for any two derivations d 1 and d 2 of a prime semiring S with char S ≠ 2 and x d 1 x d 2 = 0, for all xS implies either d 1 = 0 or d 2 = 0.

Open access
Open access

We offer new properties of the special Gini mean S(a, b) = aa /( a + b )bb /( a + b ), in connections with other special means of two arguments.

Open access
Mathematica Pannonica
Authors:
Allan Frendrup
,
Zsolt Tuza
, and
Preben Dahl Vestergaard

We treat a variation of graph domination which involves a partition (V 1, V 2,..., Vk ) of the vertex set of a graph G and domination of each partition class V i over distance d where all vertices and edges of G may be used in the domination process. Strict upper bounds and extremal graphs are presented; the results are collected in three handy tables. Further, we compare a high number of partition classes and the number of dominators needed.

Open access

Proctor and Scoppetta conjectured that

  • (1) there exists an infinite locally finite poset that satisfies their conditions VT and NTC but not SIS;

  • (2) there exists an infinite locally finite poset satisfying their conditions D3-C and D3MF but not both VT and FT; and

  • (3) there exists an infinite locally finite poset satisfying their conditions D3-C and D3MD but not NCC.

In this note, the conjecture of Proctor and Scoppetta, which is related to d-complete posets, is proven.

Open access

In this paper we introduce the concept of the Hamilton triangle of a given triangle in an isotropic plane and investigate a number of important properties of this concept. We prove that the Hamilton triangle is homological with the observed triangle and with its contact and complementary triangles. We also consider some interesting statements about the relationships between the Hamilton triangle and some other significant elements of the triangle, like e.g. the Euler and the Feuerbach line, the Steiner ellipse and the tangential triangle.

Open access

We prove certain Menon-type identities associated with the subsets of the set {1, 2,..., n} and related to the functions f, fk , Ф and Ф k , defined and investigated by Nathanson.

Open access

Generalizing results of Schatte [11] and Atlagh and Weber [2], in this paper we give conditions for a sequence of random variables to satisfy the almost sure central limit theorem along a given sequence of integers.

Open access

In the 1980’s the author proved lower bounds for the mean value of the modulus of the error term of the prime number theorem and other important number theoretic functions whose oscillation is in connection with the zeros of the Riemann zeta function. In the present work a general theorem is shown in a simple way which gives a lower bound for the mentioned mean value as a function of a hypothetical pole of the Mellin transform of the function. The conditions are amply satisfied for the Riemann zeta function. In such a way the results recover the earlier ones (even in a slightly sharper form). The obtained estimates are often optimal apart from a constant factor, at least under reasonable conditions as the Riemann Hypothesis. This is the case, in particular, for the error term of the prime number theorem.

Open access

In this paper we establish some Ostrowski type inequalities for double integral mean of absolutely continuous functions. An application for special means is given as well.

Open access

We prove the weak consistency of the trimmed least square estimator of the covariance parameter of an AR(1) process with stable errors.

Open access

The ultrapower T* of an arbitrary ordered set T is introduced as an infinitesimal extension of T. It is obtained as the set of equivalence classes of the sequences in T, where the corresponding relation is generated by a free ultrafilter on the set of natural numbers. It is established that T* always satisfies Cantor’s property, while one can give the necessary and sufficient conditions for T so that T* would be complete or it would fulfill the open completeness property, respectively. Namely, the density of the original set determines the open completeness of the extension, while independently, the completeness of T* is determined by the cardinality of T.

Open access

We prove a theorem on the preservation of inequalities between functions of a special form after differentiation on an ellipse. In particular, we obtain generalizations of the Duffin–Schaeffer inequality and the Vidensky inequality for the first and second derivatives of algebraic polynomials to an ellipse.

Open access

In this paper we work out a Riemann–von Mangoldt type formula for the summatory function ψ x := g G , g x Λ G g , where G is an arithmetical semigroup (a Beurling generalized system of integers) and Λ G is the corresponding von Mangoldt function attaining l o g p   f o r   g   = p k with a prime element p G and zero otherwise. On the way towards this formula, we prove explicit estimates on the Beurling zeta function ζ G , belonging to G , to the number of zeroes of ζ G in various regions, in particular within the critical strip where the analytic continuation exists, and to the magnitude of the logarithmic derivative of ζ G , under the sole additional assumption that Knopfmacher’s Axiom A is satisfied. We also construct a technically useful broken line contour to which the technic of integral transformation can be well applied. The whole work serves as a first step towards a further study of the distribution of zeros of the Beurling zeta function, providing appropriate zero density and zero clustering estimates, to be presented in the continuation of this paper.

Open access

A congruence is defined for a matroid. This leads to suitable versions of the algebraic isomorphism theorems for matroids. As an application of the congruence theory for matroids, a version of Birkhoff’s Theorem for matroids is given which shows that every nontrivial matroid is a subdirect product of subdirectly irreducible matroids.

Open access

Let (M, [g]) be a Weyl manifold and TM be its tangent bundle equipped with Riemannian g−natural metrics which are linear combinations of Sasaki, horizontal and vertical lifts of the base metric with constant coefficients. The aim of this paper is to construct a Weyl structure on TM and to show that TM cannot be Einstein-Weyl even if (M, g) is fiat.

Open access

We give all functions ƒ , E: ℕ → ℂ which satisfy the relation

ƒ ( a 2 + b 2 + c 2 + h )   = E ( a )   + E ( b )   + E ( c )   + K

for every a, b, c ∈ ℕ, where h ≥ 0 is an integers and K is a complex number. If n cannot be written as a2 + b2 + c2 + h for suitable a, b, c ∈ ℕ, then ƒ (n) is not determined. This is more complicated if we assume that ƒ and E are multiplicative functions.

Open access

In this article, we study a fractional control problem that models the maximization of the profit obtained by exploiting a certain resource whose dynamics are governed by the fractional logistic equation. Due to the singularity of this problem, we develop different resolution techniques, both for the classical case and for the fractional case. We perform several numerical simulations to make a comparison between both cases.

Open access

The main aim of this paper is to prove that the nonnegativity of the Riesz’s logarithmic kernels with respect to the Walsh– Kaczmarz system fails to hold.

Open access