Browse Our Mathematics and Statistics Journals

Mathematics and statistics journals publish papers on the theory and application of mathematics, statistics, and probability. Most mathematics journals have a broad scope that encompasses most mathematical fields. These commonly include logic and foundations, algebra and number theory, analysis (including differential equations, functional analysis and operator theory), geometry, topology, combinatorics, probability and statistics, numerical analysis and computation theory, mathematical physics, etc.

Mathematics and Statistics

You are looking at 1 - 50 of 11,225 items for

  • Refine by Access: All Content x
Clear All
Studia Scientiarum Mathematicarum Hungarica
Authors:
Mitchell Jubeir
,
Ina Petkova
,
Noah Schwartz
,
Zachary Winkeler
, and
C.-M. Michael Wong

We prove that the filtered GRID invariants of Legendrian links in link Floer homology, and consequently their associated invariants in the spectral sequence, obstruct decomposable Lagrangian cobordisms in the symplectization of the standard contact structure on ℝ3, strengthening a result by Baldwin, Lidman, and the fifth author.

Restricted access
Studia Scientiarum Mathematicarum Hungarica
Authors:
Bryan Gin-ge Chen
,
Robert Connelly
,
Steven J. Gortler
,
Anthony Nixon
, and
Louis Theran

In [3] it is shown, answering a question of Jordán and Nguyen [9], that universal rigidity of a generic bar-joint framework in ℝ1 depends on more than the ordering of the vertices. The graph 𝐺 that was used in that paper is a ladder with three rungs. Here we provide a general answer when that ladder with three rungs in the line is universally rigid and when it is not.

Restricted access

In this paper the author studies the problem of finding the farthest points in an intersection of balls to a given point 𝐶0. A polynomial algorithm is presented which solves the problem under the conditions that the given point is outside of the convex hull of the balls centers. It is shown that in this particular case the problem of finding the smallest ball centered in 𝐶0 which includes the intersection of balls is actually convex.

Restricted access

In this article, we present new results on specific cases of a general Young integral inequality established by Páles in 1990. Our initial focus is on a bivariate function, defined as the product of two univariate and separable functions. Based on this, some new results are established, including particular Young integral-type inequalities and some upper bounds on the corresponding absolute errors. The precise role of the functions involved in this context is investigated. Several applications are presented, including one in the field of probability theory. We also introduce and study reverse variants of our inequalities. Another important contribution is to link the setting of the general Young integral inequality established by Páles to a probabilistic framework called copula theory. We show that this theory provides a wide range of functions, often dependent on adjustable parameters, that can be effectively applied to this inequality. Some illustrative graphics are provided. Overall, this article broadens the scope of bivariate inequalities and can serve related purposes in analysis, probability and statistics, among others.

Open access

Let 𝑛, 𝑠, 𝑣 be positive integers and F ⊂ 2[𝑛]. Suppose that the union of any 𝑠 sets of F has size at most 𝑠𝑣 and 𝑛 ≥ 2𝑠+3𝑣. The main result implies the best possible bound F n v + n v 1 + + n 0 . For 𝑛 ≤ (2𝑠 − 𝑠 − 1)𝑣 the same statement is no longer true. Several statements of a similar flavor are established as well, providing further evidence for an old conjecture of the first author.

Restricted access

In this work we single out a scheduling problem in which tasks are coupled and the time delay between the first and second members of the couple is fixed by technological constraints. We will show that this scheduling problem can be reduced to the question to decide if a tactically constructed 𝑘-partite auxiliary graph contains a 𝑘-clique. We will point out that before submitting the auxiliary graph to a clique solver it is expedient to carry out various inspections in order to delete nodes and edges of the graph and consequently speed up the computations. In the lack of theoretical tools we will carry out numerical experiments to test the practicality of the clique approach.

Open access

In this paper, we define the discretized Voros–Li coefficients associated to the zeta function on function fields of genus 𝑔 over a finite fields 𝔽𝑞. Furthermore, we give a finite sum representation, an integral formula and an asymptotic formula for these coefficients.

Open access

In the case of symmetries with respect to 𝑛 independent linear hyperplanes, a stability versions of the Logarithmic Brunn–Minkowski Inequality and the Logarithmic Minkowski Inequality for convex bodies are established.

Restricted access

In this article, we use the idea of “negation” to construct new unit distributions, i.e., continuous distributions with support equal to the unit interval [0, 1]. A notable feature of these distributions is that they have opposite shape properties to the unit distributions from which they are derived; “opposite” in the sense that, from a graphical point of view, a certain horizontal symmetry is operated. We then examine the main properties of these negation-type distributions, including distributional functions, moments, and entropy measures. Finally, concrete examples are described, namely the negation-type power distribution, the negation-type [0, 1]-truncated exponential distribution, the negation-type truncated [0, 1]-sine distribution, the negation-type [0, 1]-truncated Lomax distribution, the negation-type Kumaraswamy distribution, and the negation-type beta distribution. Some of their properties are studied, also with the help of graphics that highlight their original modeling behavior. After the analysis, it appears that the negation-type Kumaraswamy distribution stands out from the others by combining simplicity with a high degree of flexibility, in a sense completing the famous Kumaraswamy distribution. Overall, our results enrich the panel of unit distributions available in the literature with an innovative approach.

Open access

High proved the following theorem. If the intersections of any two congruent copies of a plane convex body are centrally symmetric, then this body is a circle. In our paper we extend the theorem of High to the sphere and the hyperbolic plane. Let us have in 𝑆2, ℝ2 or 𝐻2 a pair of convex bodies (for 𝑆2 different from 𝑆2), such that the intersections of any congruent copies of them are centrally symmetric. Then our bodies are congruent circles. If the intersections of any congruent copies of them are axially symmetric, then our bodies are (incongruent) circles. Let us have in 𝑆2, ℝ2 or 𝐻2 proper closed convex subsets 𝐾, 𝐿 with interior points, such that the numbers of the connected components of the boundaries of 𝐾 and 𝐿 are finite. If the intersections of any congruent copies of 𝐾 and 𝐿 are centrally symmetric, then 𝐾 and 𝐿 are congruent circles, or, for ℝ2, parallel strips. For ℝ2 we exactly describe all pairs of such subsets 𝐾, 𝐿, whose any congruent copies have an intersection with axial symmetry (there are five cases).

Restricted access

This paper is mainly about direct summand right ideals of nearrings with 𝐷𝐶𝐶𝑁 which cannot be expressed as a non-trivial direct sum. A fairly natural condition (Φ-irreducibility) makes it possible to study these right ideals in reasonable depth. It turns out they are either very ring like or right ideals (called shares) controlling considerable nearring structure. The two cases are studied in some detail. A surprising feature of the last section is that, with weak hypercentrality present, the nearring is a unique finite direct sum of these right ideals if, and only if, all such right ideals are ideals.

Open access

In the present paper we aim to calculate with the exclusive use of real methods, an atypical harmonic series with a weight 4 structure, featuring the harmonic number of the kind 𝐻2𝑘. Very simple relations and neat results are considered for the evaluation of the main series.

Open access

This article describes a general analytical derivation of the Fuss’ relation for bicentric polygons with an odd number of vertices. In particular, we derive the Fuss’ relations for the bicentric tridecagon and the bicentric pentadecagon.

Open access

We improve the lower bound on the translative covering density of tetrahedra found by Y. Li, M. Fu and Y. Zhang. Our method improves the bound from 1.00122 to 1.0075, but also shows the existence of similar lower density bounds for any polyhedron which has a face without opposite parallel face or edge.

Restricted access

In this paper, we consider the asymptotic behaviour of the expectation of the number of vertices of a uniform random spherical disc-polygon. This provides a connection between the corresponding results in spherical convexity, and in Euclidean spindle-convexity, where the expectation tends to the same constant. We also extend the result to a more general case, where the random points generating the uniform random disc-polygon are chosen from spherical convex disc with smooth boundary.

Restricted access

We prove existence of Helly numbers for crystals and for cut-and-project sets with convex windows. Also we show that for a two-dimensional crystal consisting of 𝑘 copies of a single lattice the Helly number does not exceed 𝑘 + 6.

Restricted access

Consider an arrangement of 𝑛 congruent zones on the 𝑑-dimensional unit sphere 𝑆𝑑−1, where a zone is the intersection of an origin symmetric Euclidean plank with 𝑆𝑑−1. We prove that, for sufficiently large 𝑛, it is possible to arrange 𝑛 congruent zones of suitable width on 𝑆𝑑−1 such that no point belongs to more than a constant number of zones, where the constant depends only on the dimension and the width of the zones. Furthermore, we also show that it is possible to cover 𝑆𝑑−1 by 𝑛 congruent zones such that each point of 𝑆𝑑−1 belongs to at most 𝐴𝑑 ln 𝑛 zones, where the 𝐴𝑑 is a constant that depends only on 𝑑. This extends the corresponding 3-dimensional result of Frankl, Nagy and Naszódi [8]. Moreover, we also examine coverings of 𝑆𝑑−1 with congruent zones under the condition that each point of the sphere belongs to the interior of at most 𝑑 − 1 zones.

Restricted access

In this note we introduce a pseudometric on closed convex planar curves based on distances between normal lines and show its basic properties. Then we use this pseudometric to give a shorter proof of the theorem by Pinchasi that the sum of perimeters of 𝑘 convex planar bodies with disjoint interiors contained in a convex body of perimeter 𝑝 and diameter 𝑑 is not greater than 𝑝 + 2(𝑘 − 1)𝑑.

Restricted access

We study translative arrangements of centrally symmetric convex domains in the plane (resp., of congruent balls in the Euclidean 3-space) that neither pack nor cover. We define their soft density depending on a soft parameter and prove that the largest soft density for soft translative packings of a centrally symmetric convex domain with 3-fold rotational symmetry and given soft parameter is obtained for a proper soft lattice packing. Furthermore, we show that among the soft lattice packings of congruent soft balls with given soft parameter the soft density is locally maximal for the corresponding face centered cubic (FCC) lattice.

Restricted access
Mathematica Pannonica
Authors:
Kouèssi Norbert Adédji
,
Roméo Jésugnon Adjakidjè
, and
Alain Togbé

Let 𝑀𝑘 be the 𝑘-th Mulatu number. Let 𝑟, 𝑠 be non-zero integers with 𝑟 ≥ 1 and 𝑠 ∈ {−1, 1}, let {𝑈𝑛}𝑛≥0 be the generalized Lucas sequence and {𝑉𝑛}𝑛≥0 its companion given respectively by 𝑈𝑛+2 = 𝑟𝑈𝑛+1 + 𝑠𝑈𝑛 and 𝑉𝑛+2 = 𝑟𝑉𝑛+1 + 𝑠𝑉𝑛, with 𝑈0 = 0, 𝑈1 = 1, 𝑉0 = 2, 𝑉1 = 𝑟. In this paper, we give effective bounds for the solutions of the following Diophantine equations 𝑀𝑘 = 𝑈𝓁𝑈𝑚𝑈𝑛 and 𝑀𝑘 = 𝑉𝓁𝑉𝑚𝑉𝑛, where 𝓁, 𝑚, 𝑛 and 𝑘 are nonnegative integers and 𝓁 ≤ 𝑚 ≤ 𝑛. Then, we explicitly solve the above Diophantine equations for the Fibonacci, Pell, Balancing sequences and their companions respectively.

Open access

Let 𝑛 ≥ 2. A continuous 𝑛-linear form 𝑇 on a Banach space 𝐸 is called norm-peak if there is a unique (𝑥1, … , 𝑥𝑛) ∈ 𝐸𝑛 such that ║𝑥1║ = … = ║𝑥𝑛║ = 1 and for the multilinear operator norm it holds ‖𝑇 ‖ = |𝑇 (𝑥1, … , 𝑥𝑛)|.

Let 0 ≤ 𝜃 ≤ π 2  and   l , θ 2 = ℝ2 with the rotated supremum norm ‖(𝑥, 𝑦)‖(∞,𝜃) = max {|𝑥 cos 𝜃 + 𝑦 sin 𝜃|, |𝑥 sin 𝜃 − 𝑦 cos 𝜃|}.

In this note, we characterize all norm-peak multilinear forms on l , θ 2 . As a corollary we characterize all norm-peak multilinear forms on l p 2 = ℝ2 with the 𝓁𝑝-norm for 𝑝 = 1, ∞.

Open access

In this paper we introduce a construction for a weighted CW complex (and the associated lattice cohomology) corresponding to partially ordered sets with some additional structure. This is a generalization of the construction seen in [4] where we started from a system of subspaces of a given vector space. We then proceed to prove some basic properties of this construction that are in many ways analogous to those seen in the case of subspaces, but some aspects of the construction result in complexities not present in that scenario.

Open access
Studia Scientiarum Mathematicarum Hungarica
Authors:
Chuanqi Xiao
,
Debarun Ghosh
,
Ervin Győri
,
Addisu Paulos
, and
Oscar Zamora

Let F be a nonempty family of graphs. A graph 𝐺 is called F -free if it contains no graph from F as a subgraph. For a positive integer 𝑛, the planar Turán number of F, denoted by exp (𝑛, F), is the maximum number of edges in an 𝑛-vertex F -free planar graph.

Let Θ𝑘 be the family of Theta graphs on 𝑘 ≥ 4 vertices, that is, graphs obtained by joining a pair of non-consecutive of a 𝑘-cycle with an edge. Lan, Shi and Song determined an upper bound exp (𝑛, Θ6) ≤ 18𝑛/7−36𝑛/7, but for large 𝑛, they did not verify that the bound is sharp. In this paper, we improve their bound by proving exp (𝑛, Θ6) ≤ 18𝑛/−48𝑛/7 and then we demonstrate the existence of infinitely many positive integer 𝑛 and an 𝑛-vertex Θ6-free planar graph attaining the bound.

Restricted access

Suppose that 𝑇 (𝛼, 𝛽) is an obtuse triangle with base length 1 and with base angles 𝛼 and 𝛽 (where 𝛽 > 90). In this note a tight lower bound of the sum of the areas of squares that can parallel cover 𝑇 (𝛼, 𝛽) is given. This result complements the previous lower bound obtained for the triangles with the interior angles at the base of the measure not greater than 90.

Restricted access

We show that every positroid of rank 𝑟 ≥ 2 has a good coline. Using the definition of the chromatic number of oriented matroid introduced by J. Nešetřil, R. Nickel, and W. Hochstättler, this shows that every orientation of a positroid of rank at least 2 is 3-colorable.

Restricted access
Studia Scientiarum Mathematicarum Hungarica
Authors:
Pham Hoang Ha
,
Dang Dinh Hanh
,
Le Dinh Nam
, and
Nguyen Huu Nhan

Let 𝑇 be a tree, a vertex of degree one is called a leaf. The set of all leaves of 𝑇 is denoted by Leaf(𝑇). The subtree 𝑇 − Leaf(𝑇) of 𝑇 is called the stem of 𝑇 and denoted by Stem(𝑇). A tree 𝑇 is called a caterpillar if Stem(𝑇) is a path. In this paper, we give two sufficient conditions for a connected graph to have a spanning tree whose stem is a caterpillar. We also give some examples to show that these conditions are sharp.

Restricted access

We revisit the problem of property testing for convex position for point sets in ℝ𝑑. Our results draw from previous ideas of Czumaj, Sohler, and Ziegler (2000). First, their testing algorithm is redesigned and its analysis is revised for correctness. Second, its functionality is expanded by (i) exhibiting both negative and positive certificates along with the convexity determination, and (ii) significantly extending the input range for moderate and higher dimensions.

The behavior of the randomized tester on input set 𝑃 ⊂ ℝ𝑑 is as follows: (i) if 𝑃 is in convex position, it accepts; (ii) if 𝑃 is far from convex position, with probability at least 2/3, it rejects and outputs a (𝑑 +2)-point witness of non-convexity as a negative certificate; (iii) if 𝑃 is close to convex position, with probability at least 2/3, it accepts and outputs a subset in convex position that is a suitable approximation of the largest subset in convex position. The algorithm examines a sublinear number of points and runs in subquadratic time for every fixed dimension 𝑑.

Restricted access

We prove zero density theorems for Dedekind zeta functions in the vicinity of the line Re s = 1, improving an earlier result of W. Staś.

Open access

A positive integer d = i = 1 r p i d i is said to be an exponential divisor or an e-divisor of n = i = 1 r p i n i > 1 if 𝑑𝑖 ∣ 𝑛𝑖 for all prime divisors 𝑝𝑖 of 𝑛. In addition, 1 is an e-divisor of 1. It is easy to see that ℤ+ is a poset under the e-divisibility relation. Utilizing this observation we show that e-convolution of arithmetical functions is an example of the convolution of incidence functions of posets. We also note that the identity, units and the Möbius function are preserved in this process.

Open access

Let (𝑃𝑛)𝑛≥0 and (𝑄𝑛)𝑛≥0 be the Pell and Pell–Lucas sequences. Let 𝑏 be a positive integer such that 𝑏 ≥ 2. In this paper, we prove that the following two Diophantine equations 𝑃𝑛 = 𝑏𝑑𝑃𝑚 + 𝑄𝑘 and 𝑃𝑛 = 𝑏𝑑𝑄𝑚 + 𝑃𝑘 with 𝑑, the number of digits of 𝑃𝑘 or 𝑄𝑘 in base 𝑏, have only finitely many solutions in nonnegative integers (𝑚, 𝑛, 𝑘, 𝑏, 𝑑). Also, we explicitly determine these solutions in cases 2 ≤ 𝑏 ≤ 10.

Open access

Grätzer and Lakser asked in the 1971 Transactions of the American Mathematical Society if the pseudocomplemented distributive lattices in the amalgamation class of the subvariety generated by 𝟐𝑛 ⊕ 𝟏 can be characterized by the property of not having a *-homomorphism onto 𝟐𝑖 ⊕ 𝟏 for 1 < 𝑖 < 𝑛.

In this article, their question from 1971 is answered.

Open access
Mathematica Pannonica
Authors:
Muhammad T. Tajuddin
,
Usama A. Aburawash
, and
Muhammad Saad

This paper introduces and examines the concept of a *-Rickart *-ring, and proves that every Rickart *-ring is also a *-Rickart *-ring. A necessary and sufficient condition for a *-Rickart *-ring to be a Rickart *-ring is also provided. The relationship between *-Rickart *-rings and *-Baer *-rings is investigated, and several properties of *-Rickart *-rings are presented. The paper demonstrates that the property of *-Rickart extends to both the center and *-corners of a *-ring, and investigates the extension of a *-Rickart *-ring to its polynomial *-ring. Additionally, *-Rickart *-rings with descending chain condition on *-biideals are studied, and all *-Rickart (*-Baer) *-rings with finitely many elements are classified.

Open access

Very recently, the authors in [5] proposed the exponential-type operator connected with x 4 3 and studied its convergence estimates. In the present research, we extend the study and obtain the general form of its 𝑝-th order moment; 𝑝 ∈ ℕ ∪ {0}. Further, we establish the simultaneous approximation for the operator under consideration.

Open access

A bi-cyclic 4-polytope in ℝ4 was introduced by Z. Smilansky as the convex hull of evenly spaced points on a generalized trigonometric moment curve in ℝ4. We present combinatorial geometric conditions that yield the face lattices of a class of such 4-polytopes.

Restricted access

A classical result of Dowker (Bull. Amer. Math. Soc. 50: 120-122, 1944) states that for any plane convex body 𝐾, the areas of the maximum (resp. minimum) area convex 𝑛-gons inscribed (resp. circumscribed) in 𝐾 is a concave (resp. convex) sequence. It is known that this theorem remains true if we replace area by perimeter, or convex 𝑛-gons by disk-𝑛-gons, obtained as the intersection of 𝑛 closed Euclidean unit disks. It has been proved recently that if 𝐶 is the unit disk of a normed plane, then the same properties hold for the area of 𝐶-𝑛-gons circumscribed about a 𝐶-convex disk 𝐾 and for the perimeters of 𝐶-𝑛-gons inscribed or circumscribed about a 𝐶-convex disk 𝐾, but for a typical origin-symmetric convex disk 𝐶 with respect to Hausdorff distance, there is a 𝐶-convex disk 𝐾 such that the sequence of the areas of the maximum area 𝐶-𝑛-gons inscribed in 𝐾 is not concave. The aim of this paper is to investigate this question if we replace the topology induced by Hausdorff distance with a topology induced by the surface area measure of the boundary of 𝐶.

Open access

A 𝑞-graph with 𝑒 edges and 𝑛 vertices is defined as an 𝑒 × 𝑛 matrix with entries from {0, … , 𝑞}, such that each row of the matrix (called a 𝑞-edge) contains exactly two nonzero entries. If 𝐻 is a 𝑞-graph, then 𝐻 is said to contain an 𝑠-copy of the ordinary graph 𝐹, if a set 𝑆 of 𝑞-edges can be selected from 𝐻 such that their intersection graph is isomorphic to 𝐹, and for any vertex 𝑣 of 𝑆 and any two incident edges 𝑒, 𝑓 ∈ 𝑆 the sum of the entries of 𝑒 and 𝑓 is at least 𝑠. The extremal number ex(𝑛, 𝐹, 𝑞, 𝑠) is defined as the maximal number of edges in an 𝑛-vertex 𝑞-graph such that it does not contain contain an 𝑠-copy of the forbidden graph 𝐹.

In the present paper, we reduce the problem of finding ex(𝑛, 𝐹, 𝑞, 𝑞 + 1) for even 𝑞 to the case 𝑞 = 2, and determine the asymptotics of ex(𝑛, 𝐶2𝑘+1, 𝑞, 𝑞 + 1).

Restricted access
Studia Scientiarum Mathematicarum Hungarica
Authors:
David Conlon
,
Jacob Fox
,
Xiaoyu He
,
Dhruv Mubayi
,
Andrew Suk
, and
Jacques Verstraëte

For positive integers 𝑛, 𝑟, 𝑠 with 𝑟 > 𝑠, the set-coloring Ramsey number 𝑅(𝑛; 𝑟, 𝑠) is the minimum 𝑁 such that if every edge of the complete graph 𝐾𝑁 receives a set of 𝑠 colors from a palette of 𝑟 colors, then there is guaranteed to be a monochromatic clique on 𝑛 vertices, that is, a subset of 𝑛 vertices where all of the edges between them receive a common color. In particular, the case 𝑠 = 1 corresponds to the classical multicolor Ramsey number. We prove general upper and lower bounds on 𝑅(𝑛; 𝑟, 𝑠) which imply that 𝑅(𝑛; 𝑟, 𝑠) = 2Θ(𝑛𝑟) if 𝑠/𝑟 is bounded away from 0 and 1. The upper bound extends an old result of Erdős and Szemerédi, who treated the case 𝑠 = 𝑟 − 1, while the lower bound exploits a connection to error-correcting codes. We also study the analogous problem for hypergraphs.

Restricted access

We consider a function from the Euclidean three space whose zero set is the image of the standard cuspidal edge. The composition of a parametrized singular surface in the three space with this function provides an approximation of the surface by the standard cuspidal edge. Taking a look at singularities of this composition, we study various approximations of singular surfaces like the cross cap, the generalized cuspidal edge and the swallowtail by standard cuspidal edges.

Restricted access

Based on Peter’s work from 2003, quadrilaterals can be characterized in the following way: “among all quadrilaterals with given side lengths 𝑎, 𝑏, 𝑐 and 𝑑, those of the largest possible area are exactly the cyclic ones”. In this paper, we will give the corresponding characterization for every polygon, by means of quasicyclic polygons properties.

Restricted access

In this paper, some basic characterizations of a weighted Bloch space with the differentiable strictly positive weight 𝜔 on the unit disc are given, including the growth, the higher order or free derivative descriptions, and integral characterizations of functions in the space.

Open access

We present examples of multiplicative semigroups of positive reals (Beurling’s generalized integers) with gaps bounded from below.

Open access

In this paper, we propose some new positive linear approximation operators, which are obtained from a composition of certain integral type operators with certain discrete operators. It turns out that the new operators can be expressed in discrete form. We provide representations for their coefficients. Furthermore, we study their approximation properties and determine their moment generating functions, which may be useful in finding several other convergence results in different settings.

Open access

Let 𝑓 be a normalized primitive cusp form of even integral weight for the full modular group Γ = 𝑆𝐿(2, ℤ). In this paper, we investigate upper bounds for the error terms related to the average behavior of Fourier coefficients 𝜆𝑓 ⊗𝑓 ⊗⋯⊗𝑙𝑓 (𝑛) of 𝑙-fold product 𝐿-functions, where 𝑓 ⊗ 𝑓 ⊗ ⋯ ⊗𝑙 𝑓 denotes the 𝑙-fold product of 𝑓. These results improves and generalizes the recent developments of Venkatasubbareddy and Sankaranarayanan [41]. We also provide some other similar results related to the error terms of general product 𝐿-functions.

Open access

The paper is devoted to some extremal problems for convex polygons on the Euclidean plane, related to the concept of self Chebyshev radius for the polygon boundary. We consider a general problem of minimization of the perimeter among all 𝑛-gons with a fixed self Chebyshev radius of the boundary. The main result of the paper is the complete solution of the mentioned problem for 𝑛 = 4: We proved that the quadrilateral of minimum perimeter is a so called magic kite, that verified the corresponding conjecture by Rolf Walter.

Restricted access

Let 𝑛 ≥ 2 be an integer. The graph G n ¯ is obtained by letting all the elements of {0, … , 𝑛 − 1} to be the vertices and defining distinct vertices 𝑥 and 𝑦 to be adjacent if and only if gcd(𝑥 + 𝑦, 𝑛) ≠ 1. In this paper, we give some bounds for the Castelnuovo–Mumford regularity of the edge ideals and their powers for G n ¯ .

Restricted access

Motivated by the examples of Heppes and Wegner, we present several other examples of the following kind: a bounded convex region 𝐷 and a convex disk 𝐾 in the plane are described, such that every thinnest covering of 𝐷 with congruent copies of 𝐾 contains crossing pairs.

Restricted access

In this paper we show that the spherical cap discrepancy of the point set given by centers of pixels in the HEALPix tessellation (short for Hierarchical, Equal Area and iso-Latitude Pixelation) of the unit 2-sphere is lower and upper bounded by order square root of the number of points, and compute explicit constants. This adds to the currently known (short) collection of explicitly constructed sets whose discrepancy converges with order 𝑁 −1/2, matching the asymptotic order for i.i.d. random point sets. We describe the HEALPix framework in more detail and give explicit formulas for the boundaries and pixel centers. We then introduce the notion of an 𝑛-convex curve and prove an upper bound on how many fundamental domains are intersected by such curves, and in particular we show that boundaries of spherical caps have this property. Lastly, we mention briefly that a jittered sampling technique works in the HEALPix framework as well.

Restricted access

We apply a recent general zero density theorem of us (valid for a large class of complex functions) to improve earlier density theorems of Heath-Brown and Paul–Sankaranarayanan for Dedekind zeta functions attached to a number field 𝐾 of degree 𝑛 with 𝑛 > 2.

Open access

Asymptotic uniform upper density, shortened as a.u.u.d., or simply upper density, is a classical notion which was first introduced by Kahane for sequences in the real line.

Syndetic sets were defined by Gottschalk and Hendlund. For a locally compact group 𝐺, a set 𝑆 ⊂ 𝐺 is syndetic, if there exists a compact subset 𝐶 ⋐ 𝐺 such that 𝑆𝐶 = 𝐺. Syndetic sets play an important role in various fields of applications of topological groups and semigroups, ergodic theory and number theory. A lemma in the book of Fürstenberg says that once a subset 𝐴 ⊂ ℤ has positive a.u.u.d., then its difference set 𝐴 − 𝐴 is syndetic.

The construction of a reasonable notion of a.u.u.d. in general locally compact Abelian groups (LCA groups for short) was not known for long, but in the late 2000’s several constructions were worked out to generalize it from the base cases of ℤ𝑑 and ℝ𝑑. With the notion available, several classical results of the Euclidean setting became accessible even in general LCA groups.

Here we work out various versions in a general locally compact Abelian group 𝐺 of the classical statement that if a set 𝑆 ⊂ 𝐺 has positive asymptotic uniform upper density, then the difference set 𝑆 − 𝑆 is syndetic.

Open access