ON QUASI I-STATISTICAL CONVERGENCE OF TRIPLE SEQUENCES IN CONE METRIC SPACES

İşıl Aşık Demirci, Ömer Kişi* and Mehmet Gürdal

1 Department of Mathematics, Mehmet Akif Ersoy University, 15030, Burdur, Turkey
2 Department of Mathematics, Bartın University, 74100, Bartın, Turkey
3 Department of Mathematics, Süleyman Demirel University, 32260, Isparta, Turkey

Communicated by Mihály Pituk

Original Research Paper
Received: Sep 20, 2022 • Accepted: Feb 12, 2023
First published online: Mar 6, 2023
© 2023 The Author(s)

ABSTRACT

Fast [12] is credited with pioneering the field of statistical convergence. This topic has been researched in many spaces such as topological spaces, cone metric spaces, and so on (see, for example [19, 21]). A cone metric space was proposed by Huang and Zhang [17]. The primary distinction between a cone metric and a metric is that a cone metric is valued in an ordered Banach space. Li et al. [21] investigated the definitions of statistical convergence and statistical boundedness of a sequence in a cone metric space. Recently, Sakaoğlu and Yurdakadim [29] have introduced the concepts of quasi-statistical convergence. The notion of quasi I-statistical convergence for triple and multiple index sequences in cone metric spaces on topological vector spaces is introduced in this study, and we also examine certain theorems connected to quasi I-statistically convergent multiple sequences. Finally, we will provide some findings based on these theorems.

KEYWORDS
Cone metric, multiple sequence, convergence, ideal convergence

MATHEMATICS SUBJECT CLASSIFICATION (2020)
Primary 40A35; Secondary 40G15, 40F05

1. INTRODUCTION

The concept of statistical convergence of sequences in real numbers was introduced in 1951 by Fast in [12]. This concept has been studied under different names (see, [2, 4, 5, 6, 8, 13, 24, 25, 29, 30, 33, 34, 35]). Cone metric spaces were actually defined by several authors many years ago and took place under different names in the literature (see, for example [1, 3, 7, 17, 21, 22, 23]). On the other hand, in [15], the authors defined the concept of a quasi-statistical filter. Recently, Sakaoğlu and Yurdakadim [29] defined the notations of quasi-statistical convergence and strongly-Cesàro summability by relying on [8, 9] and [15], and they found some inclusion theorems between these concepts for single sequences. Ganguly and Dafadar [14] established some results relating to statistical convergence and quasi statistical convergence for double sequences.

* Corresponding author. E-mail: okisi@bartin.edu.tr
The idea of statistical convergence has been further extended to I-convergence in [19] using the notion of ideals of natural numbers, with many interesting consequences. Further investigations in this direction and more applications of ideals can be found in [10, 16, 27, 28]. In another direction, a new type of convergence was introduced in [11] called I-statistical convergence.

In this article’s Section 2, we will introduce the reader to the basic concepts of I-statistical convergence for single and triple sequences, give some consequences of this convergence, definitions and properties of cone metric spaces and, the concept of quasi-statistical convergence. In Section 3, we will introduce the quasi I-statistical convergence and quasi I'-statistically convergence for triple and multiple index sequences in topological vector space (tvs) valued cone metric space (cms).

2. PRELIMINARIES

The set of all positive integers is denoted by \mathbb{N} throughout this article, and the set of all real numbers is denoted by \mathbb{R}. Readers can refer to $[12, 13, 14, 17, 19, 21, 25, 29, 36]$ for any concepts in this article that aren’t defined and for a subset A of \mathbb{N}, $|A|$ stands for the cardinality of A.

DEFINITION 2.1. Let $A \subset \mathbb{N}$ and $A(n) = \{k \in A : k \leq n\}$, $\forall n \in \mathbb{N}$. Then

$$
\delta(A) := \limsup_{n \to \infty} \frac{|A(n)|}{n}
$$

are termed as set A’s upper and lower asymptotic densities, respectively. The natural (or asymptotic) density of the set A is indicated by the symbol

$$
\delta(A) = \delta(A) := \lim_{n \to \infty} \frac{|A(n)|}{n}.
$$

If any, all three densities are in $[0, 1]$. Also, if $\delta(A) = 1$, then S is called statistically dense. It should be easily obtained that $\delta(\mathbb{N} - A) = 1 - \delta(A)$ for each $A \subset \mathbb{N}$.

DEFINITION 2.2. With the use of the information above, we can conclude that $\{x_k\}_{k \in \mathbb{N}}$ is statistically convergent to x, provided that for $\forall \varepsilon > 0$,

$$
\delta(\{k \in \mathbb{N} : |x_k - x| \geq \varepsilon\}) = 0.
$$

We write st-$\lim x_k = x$ if $\{x_k\}_{k \in \mathbb{N}}$ is statistically convergent to x.

Additionally, I-convergence in a metric space was introduced by Kostyrko et al. [19]. This definition is depending upon the definition of an ideal I in \mathbb{N}.

DEFINITION 2.3. A family $I \subset 2^\mathbb{N}$ is called an ideal if the following properties hold true:

(i) $\emptyset \not\in I$.

(ii) For each $P, R \in I$ we have $P \cup R \in I$.

(iii) For each $P \in I$ and each $R \subset P$ we have $R \in I$.

An ideal I on \mathbb{N} for which $I \neq 0(\mathbb{N})$ is called a proper ideal. A proper ideal I is called admissible if I contains all finite subsets of \mathbb{N}.

A family of sets $F \subset 2^\mathbb{N}$ is a filter in \mathbb{N} iff (i) $\emptyset \not\in F$; (ii) for each $P, R \in F$ we have $P \cap R \in F$; and (iii) for each $P \in F$ and each $R \supset P$ we have $R \in F$.

If I is proper ideal of \mathbb{N} ($\mathbb{N} \not\in I$), then the family of sets

$$
F(I) = \{S \subset \mathbb{N} : 3P \in I, S = \mathbb{N} \setminus P\}
$$

is a filter of \mathbb{N}, it is called the filter associated with the ideal.

An admissible ideal $I \subset 2^\mathbb{N}$ is said to hold the property (AP) if for every family $\{P_n\}_{n \in \mathbb{N}}$ with $P_n \cap P_k = \emptyset$ $(n \neq k)$, $P_\infty \in I$ ($n \in \mathbb{N}$) there is a family $\{R_n\}_{n \in \mathbb{N}}$ such that $(P_\infty \setminus R_n) \cup (R_n \setminus P_k)$ for $\forall k \in \mathbb{N}$ and a limit set $R = \bigcup_{k=1}^{\infty} R_k \in I$ ([19]).

DEFINITION 2.4 ([19]). A sequence of reals $\{x_n\}_{n \in \mathbb{N}}$ is called I-convergent to L if for $\forall \varepsilon > 0$ the set

$$
A(\varepsilon) = \{n \in \mathbb{N} : |x_n - L| \geq \varepsilon\} \in I.
$$
See the references in [26, 27] for more information on I-convergent.

A nontrivial ideal I of \mathbb{N}^2 is called strongly admissible if $\{i\} \times \mathbb{N} \in I$ and $\mathbb{N} \times \{i\} \in I$ for $\forall i \in \mathbb{N}$. Obviously, a strongly admissible ideal is also admissible. Let

$$I_0 = \{ A \in \mathbb{N}^2 : (\exists m(A) \in \mathbb{N}) (i, j \geq m(A) \Rightarrow (i, j) \notin A) \} .$$

So I_0 is a nontrivial strongly admissible ideal and clearly an ideal I is strongly admissible iff $I_0 \subseteq I$.

We now remember back to the following fundamental concepts from [18, 22] which are necessary for the remainder of the article.

DEFINITION 2.5. Let E be a Hausdorff tvs with the zero vector 0. A subset P of E is called a (convex) cone if it satisfies the following conditions:

(i) $P \neq \{0\}, P \neq \emptyset$ and P is closed;
(ii) $\lambda P \subset P$ for $\forall \lambda \geq 0$ and $P + P \subset P$;
(iii) $\{0\} = P \cap (-P)$.

Given a $P \subset E$ cone, we can define a partial ordering \preceq with respect to P by defining $x \preceq y \iff y - x \in P$. We shall write $x < y$ to indicate that $x \preceq y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in \text{int}P$, where intP represent the set of the interior points of P. The sets of the form $[x, y]$ are named order-intervals and are defined as the follows:

$$[x, y] = \{ z \in E : x \preceq z \preceq y \} .$$

Order-intervals are observed to be convex. If $[x, y] \subset A$ while $x, y \in A$ and $x \preceq y$, then $A \subset E$ is called order-convex.

It is order-convex if ordered tvs (E, P) has a neighborhoods’ base of 0 that are made up of order-convex sets. Accordingly, the cone P is called a normal cone. Considering the normed space, this condition means that the unit ball is order-convex; it is equivalent to the condition that $\exists k$ with $x, y \in E$ and $0 \leq x \preceq y \Rightarrow |x| \leq k |y|$. The smallest constant k is called the normal constant of P [18].

If each of the increasing sequence that is bounded in P is convergent then, we describe to P as a regular cone. To put it another way, if a sequence $\{x_n\}$ exists such that

$$x_1 \preceq x_2 \preceq \ldots \preceq x_n \preceq \ldots \preceq y,$$

then $\exists x \in E$ such that $\lim_{n \to \infty} |x_n - x| = 0$. Similarly, the P cone is regular, if all decreasing sequences that are bounded from below converges. If P is a regular cone, it is known to be a normal cone.

Let E be a tvs, $V \subset E$ is an absolutely convex and absorbent subset, the corresponding Minkowski functional $f_V : E \to \mathbb{R}$ is defined

$$x \mapsto f_V(x) = \inf \{ \lambda > 0 : x \in \lambda V \} .$$

It is a semi-norm on E. If V is an absolutely convex neighborhood of $0 \in E$, then f_V is continuous and

$$\{ x \in E : f_V(x) < 1 \} = \text{int} V \subset V \subset \overline{V} = \{ x \in E : f_V(x) \leq 1 \} .$$

Let $e \in \text{int} P$ and (E, P) be an ordered tvs. After that

$$[-e, e] = (P - e) \cap (e - P) = \{ z \in E : -e \preceq z \preceq e \}$$

is an absolutely convex neighborhood of 0. We denote the corresponding Minkowski functional $f_{[-e]}$ by f_e. It can be verified that $\text{int} [-e, e] = (\text{int} P - e) \cap (e - \text{int} P)$. If P is normal and solid, then the Minkowski functional f_e is the norm on E. Furthermore, it is an increasing function on P. In fact, for $0 \leq x_1 \preceq x_2$ the set $\{ \lambda : x_1 \in \lambda [-e, e] \}$ is the subset of $\{ \lambda : x_2 \in \lambda [-e, e] \}$ and it follows that $f_e(x_1) \preceq f_e(x_2)$.

DEFINITION 2.6. Let $X \neq \emptyset$. Suppose that $d : X \times X \to E$ satisfies

(i) $d(x, y) = 0$ iff $x = y$ and $0 \leq d(x, y)$ for $\forall x, y \in X$;
(ii) $d(y, x) = d(x, y)$ for $\forall x, y \in X$;
(iii) $d(x, z) + d(z, y) \preceq d(x, y)$ for $\forall x, y, z \in X$.

Then d is called a cone metric on X. (X, d) is called a cone metric space (cms). Obviously, the notion of cone metric spaces generalizes the notion of metric spaces.
Definition 2.7. Let \((X, d)\) be a cms. \(\{x_n\}_{n \in \mathbb{N}}\) be a sequence in cms \(X\) and let \(x \in X\). If for \(\forall c \in E\) with \(0 < c\) there is \(N \in \mathbb{N}\) such that for all \(n > N\), \(d(x_n, x) < c\), then \(\{x_n\}_{n \in \mathbb{N}}\) is called convergent to \(x\) and it is called the limit of the sequence \(\{x_n\}_{n \in \mathbb{N}}\).

Definition 2.8. Let \((X, d)\) be a cms. \(\{x_n\}_{n \in \mathbb{N}}\) be a sequence in cms \(X\). If for any \(c \in E\) with \(0 < c\) there is \(N \in \mathbb{N}\) such that for all \(n, m > N\), \(d(x_n, x_m) < c\), then \(\{x_n\}_{n \in \mathbb{N}}\) is called a Cauchy sequence in \(X\). All Cauchy sequences in \(X\) are convergent in \(X\), and \(X\) is called a complete cms [22].

Definition 2.9. A sequence \(\{x_n\}_{n \in \mathbb{N}}\) in \(X\) is said to be \(I\)-convergent to \(\xi \in X\) if there is a set \(M \in \mathcal{P}(I), M = \{m_1 < m_2 < ... < m_j < ...\}\) such that \(\lim_{j \to \infty} x_{m_j} = \xi\), that is for \(\forall c \in E\) with \(c < 0\), there is \(p \in \mathbb{N}\) such that \(c = d(x_m, \xi) \in \text{int} P\), for \(\forall j \geq p\).

Definition 2.10. Let \(\{x_n\}_{n \in \mathbb{N}}\) be a sequence which is called to be \(I\)-statistically convergent to a point \(\xi \in X\) provided that for \(\epsilon > 0, y > 0\)

\[
\left\{ n \in N : \frac{1}{n} \sum_{k \leq n} |x_k - \xi| \geq \epsilon, \frac{\delta_I(A(\epsilon))}{n} \right\} \in I
\]

or, equivalently if for \(\forall \epsilon > 0\),

\[
\delta_I(A(\epsilon)) = I - \lim_{n \to \infty} \frac{|A_n(\epsilon)|}{n} = 0,
\]

where \(A_n(\epsilon) = \{k \leq n : |x_k - \xi| \geq \epsilon\}\).

Firstly, [31] introduced the concepts of triple sequences and statistically convergent triple sequences. The following definition of the extension of \(I\)-convergence to triple sequences in the tvs-cms are taken from the [34] research.

Definition 2.11. Let \((X, d)\) be a tvs-cms. A triple sequence \(x = \{x_{i,j,k}\}_{i,j,k \in \mathbb{N}}\) in \(X\) is called \(I_3\)-convergent to \(\xi \in X\) if for \(\forall c \in E\) with \(c > 0\), there is \(N \in \mathbb{N}\) such that

\[
A(c) = \{(i,j,k) \in \mathbb{N}^3 : d(x_{i,j,k}, \xi) \leq c\} \in I_3.
\]

It is denoted by \(I_3 - \lim_{i,j,k \to \infty} x_{i,j,k} = \xi\).

In [29], the notations of quasi-statistical convergence and quasi-density were defined as follows.

Definition 2.12. Let \(c = \{c_n\} \in \mathbb{R}^+\) be a sequence with

\[
\lim_{n \to \infty} c_n = \infty \quad \text{and} \quad \limsup_{n \to \infty} \frac{c_n}{n} < \infty.
\]

The quasi density of a subset \(K \subset \mathbb{N}\) with respect to the sequence \(c = \{c_n\}\) is defined by

\[
\delta_{c}(K) = \lim_{n \to \infty} \frac{1}{n} \sum_{k \leq n : k \in K} |c_n|.
\]

Definition 2.13. A sequence \(\{x_n\}_{n \in \mathbb{N}}\) in \(\mathbb{R}\) is named quasi-statistical convergent to \(x\) provided that for \(\forall \epsilon > 0\) the set \(K_{\epsilon} = \{k \in \mathbb{N} : |x_k - x| \geq \epsilon\}\) has quasi-density zero. It is denoted by \(\text{sl}_{\epsilon} - \lim_{\epsilon \to \infty} x_n = x\).

Since it is known [37] that any cone metric space is a first countable Hausdorff topological space with the topology induced by the open balls defined naturally for each element \(z\) in \(X\) and for each element \(c\) in \(\text{int} P\). So as in [20] we can show that \(I^\ast\)-convergence always implies \(I\)-convergence but the converse is not true. The two concepts are equivalent iff the ideal \(I\) satisfies condition \((AP)\).

3. New Results on Triple Sequences

We define the concepts of quasi \(I_1\)-statistical convergence and quasi \(I_3\)-statistical convergence of triple sequences in tvs-cms in this section.

Throughout this paper, we assume that \(c = \{c_{mno}\} \in \mathbb{R}^+\) be a triple sequence with

\[
\lim_{m,n,o \to \infty} c_{mno} = \infty \quad \text{and} \quad \limsup_{m,n,o \to \infty} \frac{c_{mno}}{mno} < \infty.
\]
DEFINITION 3.1. Let (X, d) be a tvs-cms. A triple sequence $\{v_{i,j,k}\}_{i,j,k \in \mathbb{N}}$ in a tvs-cms (X, d) is called quasi I_3-statistically convergent to a point $\xi \in X$ provided that for $\forall \alpha, \gamma \in E$ with $\alpha \geq 0, \gamma \geq 0$

$$\left\{(m, n, o) \in \mathbb{N}^3 : \frac{1}{c_{mno}} \left\{i \leq m, j \leq n, k \leq o : d(v_{i,j,k}, \xi) \geq \alpha\right\} \geq \gamma \right\} \in I_3,$$

or, equivalently if for $\forall \alpha, \gamma \in E$ with $\alpha \gg 0, \gamma \gg 0$,

$$\delta^I_3(A(\alpha, \gamma)) = (I_3)_q - \lim_{m,n,o \to \infty} \frac{|A_{mno}(\alpha, \gamma)|}{c_{mno}} = 0,$$

where $A_{mno}(\alpha, \delta) = \{i \leq m, j \leq n, k \leq o : d(v_{i,j,k}, \xi) \geq \alpha\}$.

If a triple sequence $\{v_{i,j,k}\}_{i,j,k \in \mathbb{N}}$ is quasi I_3-statistically convergent to ξ in a tvs-cms (X, d) then we write

$$I_3 - s_q - \lim_{i,j,k \to \infty} v_{i,j,k} = \xi,$$

ξ is called quasi I_3-statistical limit of the sequence $\{v_{i,j,k}\}_{i,j,k \in \mathbb{N}}$.

If we take $\{c_{mno}\} = \{mno\}$, then we obtain that $\{v_{i,j,k}\}_{i,j,k \in \mathbb{N}}$ is I_3-statistical convergent given in [32].

DEFINITION 3.2. A triple sequence $v = \{v_{i,j,k}\}_{i,j,k \in \mathbb{N}}$ in a tvs-cms (X, d) is called quasi I_3-statistical bounded if there exists a positive number M such that for any $\gamma \in E, \gamma \geq 0$ the set

$$\left\{(m, n, o) \in \mathbb{N}^3 : \frac{1}{c_{mno}} \left\{i \leq m, j \leq n, k \leq o : d(v_{i,j,k}, 0) \geq M\right\} \geq \gamma \right\} \in I_3,$$

EXAMPLE 3.3. Let I_3 be an ideal $(I_3)_0$ of \mathbb{N}^3 and $d : R^3 \times R^3 \to (E, P)$ be a cone metric ($P \subset E; E$ is tvs and P is cone). If we define triple sequence $\{v_{i,j,k}\}_{i,j,k \in \mathbb{N}}$ by

$$v_{i,j,k} = \begin{cases} (i, 1, 1), & \text{if } j, k = 2, i \in \mathbb{N} \\ \left(\frac{1}{\sqrt{i+j+k}}, \frac{1}{j+k}, \frac{1}{i+k}\right), & \text{otherwise} \end{cases}$$

then $\{v_{i,j,k}\}_{i,j,k \in \mathbb{N}}$ is unbounded but this sequence is quasi I_3-statistical convergent.

DEFINITION 3.4. A triple sequence $v = \{v_{i,j,k}\}_{i,j,k \in \mathbb{N}}$ in a tvs-cms (X, d) is called a quasi I_3-statistical Cauchy sequence if $\forall \epsilon > 0, \gamma > 0$ there exists $(p, q, r) \in \mathbb{N}^3$ such that

$$\left\{(m, n, o) \in \mathbb{N}^3 : \frac{1}{c_{mno}} \left\{i \leq m, j \leq n, k \leq o : d(v_{i,j,k}, v_{i+j+k, q+r}) \geq \epsilon\right\} \geq \gamma \right\} \in I_3.$$

From Definitions 3.1 and 3.4, we can give the following result.

COROLLARY 3.5. Let $v = \{v_{i,j,k}\}_{i,j,k \in \mathbb{N}}$ be a triple sequence in a tvs-cms (X, d), and $e \in \text{int } P$ and f_ϵ be Minkowski functional of $[-\epsilon, \epsilon]$ and $d_f = f_\epsilon \circ d$. Then

(i) A triple sequence v is in tvs cone that is quasi I_3-statistically convergent to ξ iff $d_f(v_{i,j,k}, \xi)$ is quasi I_3-statistically convergent to 0 ($i, j, k \to \infty$).

(ii) v is a quasi I_3-statistically Cauchy sequence iff $d_f(v_{i,j,k}, v_{i+p, q+r})$ is quasi I_3-statistically convergent to 0 ($i, j, k, p, q, r \to \infty$).

THEOREM 3.6. Let (X, d) be a tvs-cms. If a triple sequence $v = \{v_{i,j,k}\}_{i,j,k \in \mathbb{N}}$ in (X, d) is a quasi I_3-statistical convergent, then v is a quasi I_3-statistical Cauchy sequence.

Proof. Let $\{v_{i,j,k}\}_{i,j,k \in \mathbb{N}}$ be a quasi I_3-statistically convergent to ξ. Then for $\forall \epsilon \in \text{int } P$, $\epsilon > 0, \gamma > 0$, there is the set

$$\left\{(m, n, o) \in \mathbb{N}^3 : \frac{1}{c_{mno}} \left\{i \leq m, j \leq n, k \leq o : d(v_{i,j,k}, \xi) \geq \epsilon\right\} \geq \gamma \right\} \in I_3.$$

Select R, S, U such that $(R, S, U) \notin \omega_k$, where

$$\omega_k = \left\{(i, j, k) : d(v_{i,j,k}, \xi) \geq \frac{\epsilon}{2}\right\}.$$
Then,
\[d(v_{jk}, v_{RSU}) \leq d(v_{jk}, \xi) + d(\xi, v_{RSU}). \]

Now, we identify
\[\psi_c = \{ (i, j, k) : d(v_{jk}, v_{RSU}) \gg c \} \quad \text{and} \quad \chi_c = \{ (i, j, k) : d(\xi, v_{RSU}) \gg \frac{c}{2} \}. \]

Hereby, \(\psi_c \subseteq \omega_c \cup \chi_c \) and from this \(v \) is a quasi \(I_3 \)-statistical Cauchy. \(\square \)

THEOREM 3.7. Assume that \((X, d)\) be a tvs-cms, \(c \in \text{int} \, P \), \(f \) be Minkowski functional of \([-e, e]\) and \(d_f = f \circ d \). Let \(v = \{ v_{ijk} \}_{i,j,k}^{\infty} \) be a two triple sequence in \((X, d)\). \(v \) is quasi \(I_3 \)-statistical convergent to \(\xi_1 \) and \(y \) is quasi \(I_3 \)-statistical convergent to \(\xi_2 \) in a tvs-cms. Then \(\{ d_f(v_{ijk}, y_{ijk}) \}_{i,j,k}^{\infty} \) is quasi \(I_3 \)-statistical convergent to \(d_f(\xi_1, \xi_2) \) as \(i, j, k \to \infty \).

Proof. For each \(\varepsilon > 0 \), we get
\[d(v_{ijk}, y_{ijk}) \leq d(v_{ijk}, \xi_1) + d(y_{ijk}, \xi_2) + d(\xi_1, \xi_2). \]

Hereby,
\[d(v_{ijk}, y_{ijk}) - d(\xi_1, \xi_2) \leq d(v_{ijk}, \xi_1) + d(y_{ijk}, \xi_2) \]

so
\[\{ (i, j, k) \in \mathbb{N}^3 : f_c (d(v_{ijk}, y_{ijk}) - d(\xi_1, \xi_2)) \gg \varepsilon \} \subset \{ (i, j, k) \in \mathbb{N}^3 : d_f(v_{ijk}, \xi_1) \gg \varepsilon \} \cup \{ (i, j, k) \in \mathbb{N}^3 : d_f(y_{ijk}, \xi_2) \gg \varepsilon \} \]

and hence the result is:
\[\left\{ (m,n,o) \in \mathbb{N}^3 : \frac{1}{\varepsilon_{mno}} \left| \left\{ i \leq m, j \leq n, k \leq o : f_c (d(v_{ijk}, y_{ijk}) - d(\xi_1, \xi_2)) \gg \varepsilon \right\} \right| \right\} \in I_3. \]

\(\square \)

THEOREM 3.8. Let \((X, d)\) be a tvs-cms. \(v = \{ v_{ijk} \}_{i,j,k}^{\infty} \) is a triple sequence in \((X, d)\). If \(v \) is a quasi \(I_3 \)-statistical convergent then \(v \)'s quasi \(I_3 \)-statistical limit point is unique.

Proof. Let \(c \gg 0, y \gg 0 \). It is enough to indicate that for \(\forall Y_1, Y_2 \in I_3 \), we get
\[(\mathbb{N}^3 \setminus Y_1) \cap (\mathbb{N}^3 \setminus Y_2) = \emptyset, \]

since the sets \(\{ \mathbb{N}^3 \setminus Y_1 \} \) and \(\{ \mathbb{N}^3 \setminus Y_2 \} \) belong to the filter related to \(I_3 \). If \(\xi_1, \xi_2 \) two limits exist which are \(\xi_1 \neq \xi_2 \). Select \(c, y \) with \(0 < c < \frac{d(\xi_1, \xi_2)}{2}, 0 < y < \frac{d(\xi_1, \xi_2)}{2} \) so

\[Y_1 = \left\{ (m,n,o) \in \mathbb{N}^3 : \frac{1}{\varepsilon_{mno}} \left| \left\{ i \leq m, j \leq n, k \leq o : d(v_{ijk}, \xi_1) \gg c \right\} \right| \right\} \in I_3 \]

\[Y_2 = \left\{ (m,n,o) \in \mathbb{N}^3 : \frac{1}{\varepsilon_{mno}} \left| \left\{ i \leq m, j \leq n, k \leq o : d(v_{ijk}, \xi_2) \gg c \right\} \right| \right\} \in I_3. \]

Since the sets \(\{ \mathbb{N}^3 \setminus Y_1 \} \) and \(\{ \mathbb{N}^3 \setminus Y_2 \} \) are in the filter of \(I_3 \), the intersection of these two sets cannot be empty. Therefore, this contradicts the disjunction of \(Y_1 \)'s and \(Y_2 \)'s neighborhoods. \(\square \)

DEFINITION 3.9. Let \((X, d)\) be a tvs-cms. A triple sequence \(\{ v_{ijk} \}_{i,j,k}^{\infty} \) in \(X \) is said to be \(I_3^* \)-convergent to \(\xi \in X \) if there exists a set \(L \subseteq \mathcal{P}(I_3) \), i.e., \(\mathbb{N}^3 \setminus L \in I_3 \) such that \(\lim_{i,j,k \to \infty} v_{ijk} = \xi \) and we write
\[I_3^* - s_{q} = \lim_{i,j,k \to \infty} v_{ijk} = \xi \]

THEOREM 3.10. Assume that \(I_3 \) be a strongly admissible ideal. If \(I_3^* - s_{q} = \lim_{i,j,k \to \infty} v_{ijk} = \xi \), then \(I_3 - s_{q} = \lim_{i,j,k \to \infty} v_{ijk} = \xi \).
THEOREM 3.13. \((\text{If an} \, \mathbb{Z} \, \mathcal{A}) \) Then there is \(n_0 \in \mathbb{N} \) such that \(d\left(v_{ijk}, \xi\right) \leq \epsilon \) for all \(i, j, k \) such that \((i, j, k) \in \mathcal{Z} \) and \(i, j, k \geq n_0 \). Then
\[
\mathcal{A}(c, \rho) = \left\{ (m, n, o) \in \mathbb{N}^3 : \frac{1}{c_{mno}} \left\{ i \leq m, j \leq n, k \leq o : d\left(v_{ijk}, \xi\right) \leq \epsilon \right\} \right\} \subseteq \mathbb{Z} \cap \left((\mathbb{Z} \times \{1, 2, \ldots, (n_0 - 1)\} \times \mathbb{N}^2) \cup (\mathbb{N}^2 \times \{1, 2, \ldots, (n_0 - 1)\}) \right) \right\}.
\]
Now
\[
\mathcal{I} = \left\{ m, o \in \mathbb{N}^2 : \frac{1}{c_{m}} \left\{ | j \leq m : d\left(v_{ij}, \xi\right) \leq \epsilon \right\} \right\} \in \mathcal{I}_m.
\]
We also say that \(\{v_{ij}\}_{j \in \mathbb{N}^2} \) is quasi \(\mathcal{I}_m \)-statistically convergent to \(\xi \) in \(\mathbb{N}^3 \) if \(\forall \epsilon > 0, \) \(\forall \rho > 0 \) there is a nontrivial quasi ideal \(\mathcal{I}_n \) of \(\mathbb{N}^3 \times \mathbb{N}^2 \) called strongly admissible if \(\{j\} \times \mathbb{N}^{n-1} \) and \(\mathbb{N}^{n-1} \times \{j\} \) belong to \(\mathcal{I}_n \) for \(\forall i \in \mathbb{N} \).

Without proof, we give results for \(n \)-tuple sequences, which are just a generalization of results for triple sequences.

THEOREM 3.14. If an \(n \)-tuple sequence \(\{v_{ij}\}_{j \in \mathbb{N}^2} \) is quasi \(\mathcal{I}_m \)-statistically convergent in tvs-cms \((X, d)\), then \(\{v_{ij}\}_{j \in \mathbb{N}^2} \) is quasi \(\mathcal{I}_m \)-statistical Cauchy sequence.

PROOF. Let \(\epsilon > 0, \rho > 0 \). Since \(\mathcal{I}_n \rightarrow \mathcal{I}_m \), \(\lim_{j \rightarrow \infty} v_{ijk} = \xi \), so there exists a set \(L \in \mathbb{P}(\mathcal{I}_3) \) such that for \(\mathcal{Z} = \mathbb{N}^3 \setminus L \), \(\mathcal{Z} \in \mathcal{I}_3 \), we have
\[
\mathcal{I}_n \rightarrow \mathcal{I}_m \lim_{j \rightarrow \infty} v_{ijk} = \xi.
\]
Let \(\epsilon > 0 \). Then there is \(n_0 \in \mathbb{N} \) such that \(d\left(v_{ijk}, \xi\right) \leq \epsilon \) then for all \(i, j, k \) such that \((i, j, k) \in \mathcal{Z} \) and \(i, j, k \geq n_0 \). Then
\[
A(c, \rho) = \left\{ (m, n, o) \in \mathbb{N}^3 : \frac{1}{c_{mno}} \left\{ i \leq m, j \leq n, k \leq o : d\left(v_{ijk}, \xi\right) \leq \epsilon \right\} \right\} \subseteq \mathbb{Z} \cap \left((\mathbb{Z} \times \{1, 2, \ldots, (n_0 - 1)\} \times \mathbb{N}^2) \cup (\mathbb{N}^2 \times \{1, 2, \ldots, (n_0 - 1)\}) \right) \right\}.
\]
This indicates that \(A(c, \rho) \in \mathcal{I}_3 \). Therefore \(\mathcal{I}_3 \rightarrow \mathcal{I}_m \lim_{j \rightarrow \infty} v_{ijk} = \xi \).

REFERENCES

Open Access statement. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes – if any – are indicated.