Direct expansion (DX) air conditioning (A/C) system control: Hybrid BOANFIS technique

Seema Haribahu Jadhav* and Rajashree Vilas Sarwadnya

Department of Instrumentation Engineering, Shri Guru Gobind Singhji Institute of Engineering and Technology, (SGGS I E&T), Vishnupuri, Nanded, Maharashtra - 431 606, India

Received: May 19, 2022 ● Accepted: February 5, 2023
Published online: April 19, 2023

ABSTRACT

This paper describes a novel hybrid technique with fractional order PID controller (FOPID) for simultaneously controlling the humidity of indoor air temperature and the direct expansion (DX) air conditioning (A/C) system. The proposed hybrid system is a joint performance of the butterfly optimization algorithm (BOA) and adaptive network fuzzy inference system (ANFIS), hence forth it is called BOANFIS Technique (BOANFIST). The purpose of the proposed system is to disconnect the temperature and humidity control circuits. The proposed control is modeled and replicated on MATLAB platform and is assessed using existing systems. The statistical performance of the proposed and existing systems of mean, median and standard deviation is also evaluated. It reduces computational time up to 1.01 s and also reduces energy consumption to around 16.42 KWh/day. Furthermore, the simulation outcomes suggest that the proposed technique may efficiently and accurately obtain the optimal global solutions of the proposed technique compared to existing systems.

KEYWORDS
direct expansion (DX) air conditioning (A/C) system, fractional order PID controller (FOPID), temperature and humidity control

1. INTRODUCTION

In buildings, it is significant to control indoor humidity at a suitable level, because it directly affects building owners’ thermal comfort, indoor air quality (IAQ), with operational ability to build air conditioning installations [1]. Several humidity control techniques, heat pipe technology and outside air pre-conditioning [2] have been formulated for huge central A/C systems not appropriate for DX A/C systems [3]. Despite that, a large amount of DX A/C systems are presently fitted through single speed compressor as well as fans, which rely on cycling on and off to keep only the interior temperature of the dry lamp. This outcome is uncontrolled balance indoor humidity, which leads to thermal discomfort, poor IAQ with less energy efficiency for residents [4].

The variable frequency inverters are generally enabled the distribution fan in a DX A/C system, creating a novel method to concurrently control RH and indoor air temperature using DX A/C systems [5]. Nevertheless, complex dynamic heat with mass transfer properties that occur on variable-speed DX air conditioning systems make it very hard for enlarging a control system for instantaneous control of indoor air humidity and temperature [6–8]. For instance, due to great cross-coupling among two feedback loops, which is due to the variation of the compressor that produces the temperature control, and because the variation of speed of supply fan produces a humidity control, DX air conditioning systems variable speed drives that have conventional PID feedback controller is insufficient [9–12].

Whereas the DX A/C system is an inside evaporator, heat and mass shift among air and refrigerant could be appraised using an elaborate physical model, hence it is necessary for decoupling two coupled control loops [13–20]. However, the heat and mass shift of DX evaporator affects a huge number of factors consisting of heat and fluid flow geometry, flow
turbulence, and so on. [21]. If physical model is produced for DX cooling with dehumidification coil, hence, it is practically not possible to take all of these elements [22]. Based on the assumption of Lewis unit number, the mass shift coefficient is appraised as heat transfer coefficient. However, many reported studies suggest that the Lewis number deviates as being one. Furthermore, the improvement of a controller based on physical models is necessary [23–25]. To overwhelm the issues, the novel system for DX A/C system is essential. The proposed approach optimally controls air temperature as well as humidity through better accuracy and less computation time.

The rest of paper is declared as follow: Section 2 describes the literature review of the current work, Section 3 explains the system modeling and design, Section 4 clarifies proposed optimization. Section 5 describes result and discussion. Finally, section 6 finishes the manuscript.

2. RECENT RESEARCH WORK

Numerous investigation works can be found in the literature that relied on optimal PID controller design for DX A/C system with dissimilar systems and aspects. Some of the work is reviewed.

Xia et al. [26] have established hunting results on the poor operational safety and performance of DX A/C system; when it is variable speed (VS) operated to dissimilar sensible and latent cooling capabilities. The obtainable dynamic design was more formulated by involving equations to estimate temperature sensor dynamics and wind side motion parameters. Sholahudin et al. [27] have illustrated the determination of dynamic effectiveness for DX A/C system that was advanced by Bayesian artificial neural network (ANN). Input and output data sets were created via changing the compressor speed at different signal amplifiers by a dedicated AC simulator and containing dynamic cooling load with ambient temperature. Energy dissipation that refers to potential losses at work in system and selected as ambient temperature output variables for thermal comfort. The key specification of the ANN design, which contains the number of neurons and latency lines, were optimized to improve the prediction accuracy.

For enhancing the DX A/C system designed air flow rate of 20,000 m³/h, design concept of split front evaporator by modernized suction head and suffocation on capillaries was adopted and the design explained by Tang et al. [28]. DX A/C system design was experimented and verified on a trial basis. The front split decreased the cooling pressure drop at evaporator suction head and suffocation design restricted the maximal flow rate in every branch circuit, helping to improve the cooling flow distribution of system.

Xie et al. [29] have executed the occupant behavior (OB), which was identified as an important factor influencing the energy consumption of a building’s occupants. Air conditioning application and aggression simulation technique; It integrate OB design with Energy Plus (E+) modified distributed air conditioning system. Initially, we created an observation system, which utilizes motion sensors with thermostats for measuring the utilization and usefulness of air conditioning in a hotel building.

Yan et al. [30] have illustrated short to medium size buildings; DX A/C systems were highlighted applications. Multi-variable Controller (MVC) was established for DX Variable Speed (VS) air conditioning systems. Yan et al. [31] have executed the primary A/C uses offering occupants acceptable levels of interior thermal comfort and six parameters. Despite that many A/C systems only control air temperature. Any time five non-temperature parameters differ remarkably, a resident may feel hot and uncomfortable. For solving the problem, a full thermal comfort index must be utilized to regulate A/C systems; a fuzzy logic controller was obtained. However, the fuzzy logic control method was complex and then the previously installed fuzzy logic driver was interpreted for its actual use.

Chen et al. [32] have introduced the conventional on-off control single evaporator DX A/C system; it must operate under various seasonal cooling load conditions. Therefore, it would be difficult to try to maintain a different indoor temperature environment the entire time if not complex and costly ancillary activities provide different dehumidification capabilities.

2.1. Background of the research work

A review of the current research work displays that the operation and control of an air conditioning system is always a challenging and difficult task. A TEV features and the non-linearity of evaporator superheat. Hunting also causes a lack of safety and operational efficiency of the DX A/C system. Various approaches such as Markov Chain method, Artificial Neural Network (ANN), Monte-Carlo stochastic Model and Fuzzy Logic Controller (FLC) are used in air condition system stability. The ANN approach is utilized for dynamic performance recognition in DX AC system and the drawbacks of ANN hardware are dependence, inexplicable characteristics of appropriate network structure and complexity of displaying the trouble. Therefore, the outcomes are perceived dependent on the assumption; hence it may not be extensively accepted. However, studies on the investigation of temperature sensor dynamics with air side operating features cannot be recognized. To overcome these challenges, optimal DX system control is required. A/C using advanced hybrid technology. In the literature, numerous works are presented to solve this problem and the presented papers do not provide efficient outcomes. These problems have inspired the present investigation work.

3. DIRECT EXPANSION AIR CONDITIONING (DX-A/C) SYSTEM

Figure 1 illustrates the schematic diagram of the DX A/C system. It consists of two portions, i.e., DX refrigeration and air distribution subsystem. The DX refrigeration plant comprises of electronic expansion valve (EEV), changeable speed compressor, DX condenser and evaporator. The DX
plant thermodynamic cycle contains the processes of isenthalpic expansion, isentropic compression, rejection and condensation of isobaric heat, and processes of evaporation and absorption of isobaric heat [33]. The evaporator DX was located in the air supply pipe to act as an air cooling coil. Moreover, EEV incorporates a pulse generator, a step motor and a throttle needle valve that is utilized for preserving the superheat degree of refrigerant in evaporator outlet. Besides, condenser cooling air is utilized by condenser air duct for conduction that carries unwanted heat as condenser to the outside of the laboratory. Cooling air temperature input into the condenser is utilized by electric heater that is controlled via solid state relay (SSR). Furthermore, the air distribution subsystem integrated an air distribution duct network by changeable speed centrifugal supply fan; returns air dampers with conditioned space [34].

3.1. Dynamic model of DX A/C system

Depending on energy and mass conservation, the DX A/C system dynamic model is exposed. The following assumptions are taken for the DX A/C mathematical modeling system [35].

- 25% fresh air is permitted to enter the system and it mixes with 75% re-circulated air in the evaporator.
- Inside the heat exchangers, adequate air mixing takes places in which air is conditioned.
- DX evaporator air side may be separated into two areas, i.e., dry and wet-cooling region; in region of dry-cooling, the air temperature is diminished and the dehumidification occurs mainly in the wet-cooling area.
- In air ducts, the thermal losses are neglected.
- Air conditioning in the room is extracted using a fan; up to 75% of air is re-circulated and remaining air is blown out of the system through a fan.

DX A/C system mass and energy conservation equations may be illustrated as follows depending on the above considerations [36]. The energy balance equation model for conditioned space temperature is expressed in Eq. (1):

\[
Q_{in} - Q_{out} = \Delta Q_{cond} + \Delta Q_{evapor} + \Delta Q_{dehum} + \Delta Q_{exch} + \Delta Q_{losses}
\]

Fig. 1. Schematic diagram of DX-A/C system
\[C_{oa}\delta V^* \frac{dT^*_w}{dt} = C_{oa}\delta V^*_f \left(T^*_w - T^*_a \right) + Q^*_f + k_V V^*_f \]

where \(V^*_f \) denotes volumetric airflow rate, \(C_{oa} \) implies air specific heat, \(\delta \) is the moisture air density, \(Q^*_f \) denotes sensible load of the space, \(k_V \) implies supply fan heat gain coefficient, \(T^*_v \) is air leaving DX cooling coil temperature, and \(T^*_a \) denotes temperature of air in conditioned space. Volumetric airflow rate is illustrated in Eq. (2):

\[V^*_f = k^*_f S^*_f \]

where \(k^*_f \) implies supply fan speed coefficient, \(S^*_f \) implies speed of supply fan. Sensible load of space \(Q^*_f \) is generally related to the electrical devices and residents. According to the electrical device characteristics, heat emitted from electric devices is simple to recognize; because the load linked to occupant that may be modeled via current concentration of CO₂ in conditioning room [37]. Sensible heat load \(Q^*_f \) may be modeled using Eq. (3):

\[Q^*_f = \mu C^*_v + v \]

where \(C^*_v \) is the concentration of CO₂ in the room, \(\mu \) and \(v \) denotes gain parameters of sensible heat. The mass conservation of dynamic mathematical model of moisture within the conditioned space is denoted in Eq. (4):

\[\delta V^* \frac{dW^*_w}{dt} = C_{oa}\delta V^*_f \left(W^*_w - W^*_a \right) + M^* \]

where \(M^* \) implies production of moisture load on conditioned space, \(W^*_w \) is air leaving the DX cooling coil moisture content, \(W^*_a \) is moisture of the air in conditioned space. The principle of conservation of energy on air side of the dry-cooling region is calibrated using Eq. (5):

\[C_{oa}\delta V^*_h \frac{dT^*_d}{dt} = C_{oa}\delta V^*_f \left(T^*_d - T^*_a \right) + \beta^*_1A_1 \left(T^*_w - T^*_a - \frac{T^*_d}{2} \right) \]

where \(T^*_d \) is the evaporator wall of the DX air temperature, \(\beta^*_1 \) is coefficient of the heat transfer [38]. The energy balance region of wet-cooling because of the powerful combination between moisture and temperature can be demonstrated in Eq. (6):

\[C_{oa}\delta V^*_h \frac{dT^*_w}{dt} + \delta V^*_h \frac{dW^*_w}{dt} = C_{oa}\delta V^*_f \left(T^*_w - T^*_a \right) + \beta^*_1A_1 \left(T^*_w - T^*_a - \frac{T^*_d}{2} \right) \]

where \(A_1 \) implies DX evaporator heat transfer region of wet-cooling, \(V^*_h \) is DX evaporator volume in air side on wet-cooling region on air side, \(h^*_0 \) implies latent heat and \(\beta^*_2 \) implies coefficient of the heat transfer. A dynamic mathematic model through the energy equation conservation for evaporator wall is denoted in the following equation:

\[(C_{oa}\delta V^*)_w \frac{dT^*_w}{dt} = \beta^*_1A_1 \left(T^*_a - \frac{T^*_d}{2} + T^*_w \right) \]

\[+ \beta^*_2A_2 \left(T^*_d - \frac{T^*_a + T^*_w}{2} \right) \]

\[- M^*_w \left(h^*_w - h^*_r \right) \]

\[M^*_w = \frac{V^*_w V^*_\text{com}}{V^*_d} \alpha = \frac{V^*_w V^*_\text{com}}{V^*_d} \left(1 - 0.015 \left(\frac{P^*_c}{P^*_e} \right)^{1/\alpha} \right) \]

where \(M^*_w \) implies refrigerant mass flow rate, \(V^*_w \) is compressor speed, \(\alpha \) is coefficient of compressor displacement, \(\alpha \) refers to the index of compressor that is considered as a constant at the value of 1.18, \(V^*_w \) is the superheated refrigerant specific volume, \(h^*_w \) and \(h^*_r \) denote refrigerant enthalpy, \(P^*_c \) and \(P^*_e \) refer to the pressure of condensing and evaporating and \(V^*_\text{com} \) is the rotor compressor swept volume. The relationship between temperature and humidity can be expressed as

\[dW^*_w \frac{dt}{dt} = 2 \times 0.01987 T^*_a + 0.085 \frac{dT^*_w}{dt} \]

\[\dot{Y} = f(Y, U) = D^{-1} f_1(Y, U) + D^{-1} f_2(x) \]

where \(\dot{Y} = \left[T^*_a, T^*_d, T^*_w, T^*_a, W^*_w, W^*_a, U = \left[V^*_f, V^*_w \right]^T \right] \) and \(Z = \left[Q^*_o, M^* \right]^T \).

\[f_1(y, u) = [f_1 f_2 f_3 f_4 f_5] \]

\[f_1 = \omega \delta V^*_f \left(W^*_w - W^*_a \right) + \mu C^*_v + k_V V^*_f \]

\[f_2 = C_{oa}\delta V^*_f h^*_0 \left(W^*_w - W^*_a \right) + \mu C^*_v \]

\[f_3 = C_{oa}\delta V^*_f \left(T^*_d - T^*_a \right) + \beta^*_1A_1 \left(T^*_w - \frac{1 - p}{2} T^*_a + \frac{p T^*_d}{2} \right) \]

\[f_4 = C_{oa}\delta V^*_f \left(T^*_d - T^*_a \right) + \delta V^*_h h^*_0 \left(1 - p \right) W^*_a + p W^*_0 - W^*_e \]

\[f_5 = \beta^*_1A_1 \left(\frac{(1 - p) T^*_a + T^*_d}{2} + p T^*_0 - T^*_w \right) \]

\[+ \beta^*_2A_2 \left(T^*_d - \frac{T^*_a + T^*_w}{2} \right) \]

\[- M^*_w \left(h^*_w - h^*_r \right) \]

\[f_7 = V^*_c C^*_0 C^*_c \]

\[f_8(x) = \left[\mu \nu 0 0 0 0 \right]^T \]

Decoupling matrix \(D^* \) is estimated using Eq. (19):
The system response creates the damping oscillation and the steady state error. Fractional calculus is expansion of fractional orders integration and differentiation for FOPID controller, which is represented in Eq. (20) [39].

\[
bD^\alpha_t \begin{cases} \frac{dt^n}{d^{a}t} & \alpha > 0 \\ 1 & \alpha = 0 \\ \int dt^n & \alpha < 0 \end{cases} \quad (20)
\]

The differential equation of a FOPID controller is defined in Eq. (22):

\[
\begin{align*}
\dot{u}(t) &= k_p e(t) + k_i \int e(t) + k_d \frac{de(t)}{dt} \\
\alpha &- 1 \leq \alpha \leq \kappa
\end{align*}
\]

The process result is in accordance with the reference on steady state and comprehensiveness is assured. A steady state is assumed for balancing control signal \(u_0 \) constant error \(e_0 \neq 0 \).

\[
\begin{align*}
u_0 &= k_p e_0 + k_i e_0 t \\
u &= k_p e + \frac{1}{1 + \frac{1}{\alpha} \frac{de(t)}{dt}}
\end{align*}
\]

\[
bD^\alpha_t f(t) = \frac{1}{\mathcal{R}(\alpha - \alpha)} \int_{b}^{t} \frac{f^{\alpha}(\tau)}{(\tau - \gamma)^{\alpha-1}} d\tau \quad (26)
\]

\[
u(t) = k_p \dot{e}(t) + k_d \frac{de(t)}{dt} = k_p \dot{e}(t) + T_d \frac{de(t)}{dt} = k_p \dot{e}(t)
\]

where the derivation time refers to \(T_d = k_d \).

\[
O.F = \text{Min} \left(\sum_{i=1}^{n} J_i \right) \quad (28)
\]

\[
J_1 = \text{IAE}(\text{Integral Absolute Error}) = \int_{0}^{\infty} |e(t)| dt \quad (29)
\]

\[
J_2 = \text{ISE}(\text{Integral Square Error}) = \int_{0}^{\infty} \epsilon^2(t) dt \quad (30)
\]

\[
J_3 = \text{ITAE}(\text{Integral with Time Absolute Error}) = \int_{0}^{\infty} t|e(t)| dt \quad (31)
\]

\[
J_4 = \text{ITSE}(\text{Integral with Time Square Error}) = \int_{0}^{\infty} te^2(t) dt \quad (32)
\]

Subjected with,

\[
k_p^\min < k_p < k_p^\max \quad (33)
\]

\[
k_i^\min < k_i < k_i^\max \quad (34)
\]

\[
k_d^\min < k_d < k_d^\max \quad (35)
\]

\[
\lambda^\min < \lambda < \lambda^\max \quad (36)
\]

\[
\mu^\min < \mu < \mu^\max \quad (37)
\]

For estimating the necessary sensible capacitance \(Q_{s,s} \) and latent capacitance \(Q_{l,s} \), \(T_{d,b} \) and \(T_{w,b} \) are considered as the two inputs of controller. The necessary sensible capacitance \(Q_{s,s} \) and latent capacitance \(Q_{l,s} \) may be predicted.

\[
Q_{s,s} = \sum_{i=1}^{n} P_i (\Delta T_{d,b}) \times W_b (\Delta T_{w,b})
\]

\[
+ P_i (\Delta T_{d,b}) \times \sum_{i=1}^{n} \sum_{j=1}^{n} P_j (\Delta T_{w,b}) \times W_b (\Delta T_{d,b}) \quad (38)
\]

\[
Q_{l,s} = \sum_{i=1}^{n} P_i (\Delta T_{w,b}) \times W_b (\Delta T_{w,b})
\]

\[
+ P_i (\Delta T_{w,b}) \times \sum_{i=1}^{n} \sum_{j=1}^{n} P_j (\Delta T_{w,b}) \times W_b (\Delta T_{w,b}) \quad (39)
\]

where \(P_i \) is the linguistic variable probability, \(W_i \) linguistic variable weight, \(T_{d,b} \) implies temperature of air dry-bulb in °C, and \(T_{w,b} \) implies temperature of the air wet-bulb in °C. The entire outcome cooling capacity is denoted in Eq. (40):

\[
D^* = \begin{bmatrix}
0 & C_{s,0} \delta V^* & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & C_{s,0} \delta V^* & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
2 \times 0.0198 T_e^{*} + 0.085 & 0 & 0 & 0 & 1 & 0 \\
1000 & 0 & 0 & 0 & 0 & V^*
\end{bmatrix}
\]

\[
\text{DX-A/C system dynamic model is established by evaluation technique for model parameter recognition with satisfactory accuracy.}
\]

\section{CONTROL STRATEGY}

The system response creates the damping oscillation and the steady state error. Fractional calculus is expansion of fractional orders integration and differentiation for FOPID controller, which is represented in Eq. (20) [39].
\[Q_{s,E} = Q_{d,E} + Q_{l,E} \tag{40} \]

\[\text{SHR}_{E} = Q_{s,E} / Q_{l,E} \tag{41} \]

The FOPID controller parameter may be tuned by the BOANFIS system, which manages the indoor humidity and air temperature. The proposed control strategy schematic diagram is portrayed in Fig. 2.

4.1. Proposed BOANFIST to control indoor air temperature and humidity

The proposed hybrid system is known as the BOANFIS Technique because it combines the Butterfly Optimization Algorithm (BOA) and the ANFIS; hence it is called (BOANFIST). A butterfly can produce the fragrance by several intensities that are interrelated by their fitness [40]. While a butterfly is capable to smell the fragrance of other butterfly, it would travel on a global search. Five layers are shown on ANFIS. Every layer has certain nodes on node function; (a) Fuzzification method; (b) Fuzzy of last piece; (c) Normalization functions membership; (d) Fuzzy rules of resultant piece; (e) Network exit. For deciding the parameters of fuzzy inference system on ANFIS structure of Sugeno hybrid training algorithm is used. For creating as well as organizing the parameter units of membership functions in fuzzy inference system, the algorithm combines least squares methods as well as the BP gradient descent algorithm [41].

The indoor air dry-bulb temperature \(T_{d,b} \) and wet-bulb temperature \(T_{w,b} \) are taken as input parameters of the BOA technique. After initiation method, the input parameters are randomly created. Then the controller parameter FOPID is adjusted via ANFIS system. The comprehensive step method is clarified below,

Step 1: Initiation

Initialize state, disturbance and control vector \(X = [x_1, x_2, \ldots, x_n] \), \(Y = [y_1, y_2, \ldots, y_n] \) and \(C = [c_1, c_2, \ldots, c_n] \) of DX-A/C system.

Step 2: Random generation

Initialize BOANFIST optimization as \(X_j \) for \(j = 1, 2, 3, \ldots, m \). The data gain parameters \(K_p, K_i \) and \(K_d \) are engaged as input that is arbitrarily created by below matrix Z:

![Fig. 2. Schematic diagram of control strategy](image_url)
Step 3: Function Fitness

The fitness of DX-A/C system is computed as below:

\[
F_i = \begin{bmatrix}
 f_1 \left[K_{i}^{11} K_{i}^{11} K_{j}^{11} \mu_{i}^{11} K_{j}^{12} K_{j}^{12} \mu_{i}^{12} \ldots K_{p}^{1m} K_{p}^{1m} K_{j}^{1m} \mu_{i}^{1m} \mu_{m}^{1m}
ight] \\
 f_2 \left[K_{i}^{21} K_{i}^{21} K_{j}^{21} \mu_{i}^{21} K_{j}^{22} K_{j}^{22} \mu_{i}^{22} \ldots K_{p}^{2m} K_{p}^{2m} K_{j}^{2m} \mu_{i}^{2m} \mu_{m}^{2m}
ight] \\
 \vdots \\
 f_n \left[K_{i}^{n1} K_{i}^{n1} K_{j}^{n1} \mu_{i}^{n1} K_{j}^{n2} K_{j}^{n2} \mu_{i}^{n2} \ldots K_{p}^{nm} K_{p}^{nm} K_{j}^{nm} \mu_{i}^{nm} \mu_{m}^{nm}
ight]
\end{bmatrix}
\]

(43)

The objective function is to get a comfortable air temperature and humidity by low energy consumption optimal tuning of FOPID controller using hybrid BOANFIS algorithm.

\[\text{minj}(k) = \text{min}(j_1(k) + j_2(k) + j_3(k))\]

(44)

The values of \(j_1(k), j_2(k), j_3(k)\) are expressed as

\[j_1(k) = \sum_{k}^{k+N_y} ||y_1(k) - T_{cr}(k)||_Q\]

(45)

\[j_2(k) = \sum_{k}^{k} ||y_2(k) - W_{cr}(k)||_Q\]

(46)

\[j_3(k) = \sum_{k}^{k+N_y} ||\epsilon(k)||_Q\]

(47)

where \(T_{cr}\) refers to reference air temperature, \(W_{cr}\) refers to reference moisture content in conditioning room and \(y_1, y_2\) refer forecasted temperature and humidity of the \(k^{th}\) step. The \(j_1(k)\) denotes the indoor temperature deviation as its value of the set-point, \(j_2(k)\) denotes the indoor humidity deviation and \(j_3(k)\) denotes ramping rate of compressor speed.

Step 4: New Position Update with ANFIS

The fuzzy rule is the preliminary step, the input variables determination and fuzzification. Each node \(j\) represents as adaptive functions of node is explained on this layer.

\[O_j^1 = \mu^A_{j}(X), j = 1, 2\]

(48)

where input for \(j^{th}\) node denoting \(X\) is associated. Therefore, membership in fuzzy sets \((A_1, A_2)\) is denoted as \(O_j^1\) and subsequent input \(X\) is fulfilled using quantifier A.

Step 5: Estimation of Membership Function

The function of membership for fuzzifying based on the Bell function is denoted in Eq. (49):

\[\mu_A(x_i) = \frac{1}{1 + \left(\frac{x - d_i}{a_i}\right)^n}\]

(49)

where \(d_i\) and \(a_i\) are the Bell function parameters.

Step 6: Estimation of Firing Strength

The layer 3 is demonstrated using “M” as circle node. Moreover, firing strength of every rule is estimated on this layer. The layer of output denotes is shown below:

\[O_j^2 = W_j = \mu^A_j(X) \cdot \mu^B_j(Y)\] for \(j = 1, 2\)

(50)

Step 7: Normalization

Each T-norm operator performs fuzzy and operation on this layer. Every node is declared as “N” in layer 4. Output node is \(O_j^3\) or \(W_j\) and it is calculated as follows:

\[O_j^3 = W_j = \frac{W_j}{W_1 + W_2}, j = 1, 2\]

(51)

Step 8: De-Fuzzification

In layer 5, each node is adaptive square node by node function, which is given in Eq. (52):

\[O_j^4 = W_j \cdot f_j = W_j \cdot \left(p_x + q_y + r_j\right), j = 1, 2\]

(52)

Step 9: Tuning the FOPID Parameters

In layer 6, the single node estimates the total number of the entire received signals from layer 6 for producing the overall outcome. Here, ANFIS output is similar to the unique node. The output of the ANFIS structure for tuning the FOPID controller parameters to attain the adaptable indoor air temperature and humidity is given below:

\[O_j^5 = f = \frac{\sum W_j \cdot f_j}{\sum W_j}, j = 1, 2\]

(53)

In this manner, for a Sugeno fuzzy inference system, an adaptive network is nearly equal. The structure of ANFIS is shown in Fig. 3.

Step 10: Termination

The aforementioned process is completed when optimal results are attained using the goal function. In addition to the initialization phase, the preceding steps are repeated iteratively until a final base is met. Figure 4 depicts the established algorithm’s flow chart.

5. RESULT AND DISCUSSION

A novel BOANFIST hybrid technique is proposed in this paper for concurrent control of indoor air temperature and humidity on DXA/C system with FOPID. To achieve the desired responses, FOPID controller gain is rotated through
the ANFIS approach and RDF weight matrices are predictable with the help of the BOA method. The proposed BOANFIST technique guarantees the system stability under large disturbances with the reduction of the overshoot and the computation. The BOANFIST model is performed on MATLAB/Simulink platform. The results obtained are linked with some of the current methods, such as BOA, GOA and CS. The simulation parameters are shown in Table 1.

To achieve the enhanced performance of the proposed hybrid system, control parameters are carefully adjusted in simulation. The adjustment parameter is set to 0.5 and sampling interval 2 s. The pressure value of the condensation and evaporation is considered as 1.812×10^6 Pa and 0.486×10^6 Pa. Furthermore, the water vaporization latent

![Fig. 3. Structure of the ANFIS](image3)

![Fig. 4. Flowchart of the proposed hybrid BOANFIS algorithm](image4)

<table>
<thead>
<tr>
<th>Table 1. Simulation parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>C_{w0}</td>
</tr>
<tr>
<td>δ</td>
</tr>
<tr>
<td>V_{h1}</td>
</tr>
<tr>
<td>V_{h2}</td>
</tr>
<tr>
<td>h_f^k</td>
</tr>
<tr>
<td>V_7^*</td>
</tr>
<tr>
<td>P_c^*</td>
</tr>
<tr>
<td>β_1</td>
</tr>
<tr>
<td>β_2</td>
</tr>
<tr>
<td>A_1</td>
</tr>
<tr>
<td>A_2</td>
</tr>
<tr>
<td>P_e^*</td>
</tr>
</tbody>
</table>
heat value is taken as 2,450 kJ/kg and the coefficient of the heat transfer value is 0.0934 kW m\(^{-2}\) °C\(^{-1}\) and 0.0457 kW m\(^{-2}\) °C\(^{-1}\). These values provide better control performance and lead to a very easy atmosphere for indoors depending on the proposed system. It consists of numerous ways of restrictions on this DX A/C system. The matrices are taken as 23, 23, 23, 15, 12.44/1,000, 13.5/1,000 and 0.001. It is considered as 0.0415, 0.309 and 0.7. The output performance of the proposed hybrid BOANFIS method is illustrated in Fig. 4. At time 0–50 s, the system efficiency is slowly maximized. From this, the indoor humidity and air temperature can achieve their set points after working with the DX A/C system. The Bode diagram of the proposed system is displayed in Fig. 5.

The error of the proposed BOANFIST approach is demonstrated in Fig. 6. The proposed system error is gradually decreased at 0–50 s. After 250 s, the proposed system error is preserved at constant value. The overall performance analysis of the BOANFIST technique is expressed in Fig. 7. It indicates that the output of the proposed system is enhanced via the BOANFIST approach. Furthermore, the error of the system is gradually reduced. The convergence curve for the proposed hybrid BOANFIST method is shown in Fig. 8.

The proposed system accomplishes 1.69 convergence values. Besides, the overall performance analysis of the conventional CS system is displayed in Fig. 9. Overall
performance analysis of conventional BOA system is demonstrated in Fig. 10. Furthermore, overall performance analysis of conventional GOA technique is displayed in Fig. 11. Overall comparison of proposed output performance to existing system is demonstrated in Fig. 12. The proposed system enhanced the output performance in less time when contrasted to the existing BOA, CS and GOA approaches. The overall error comparison of BOANFIST system with existing system is demonstrated in Fig. 13. Figure 14 portrays convergence comparison of the BOANFIST and existing system. The convergence of BOANFIST system results 1.69. The value of the convergence curve of BOA, CS and GOA system implies 1.75, 1.85 and 1.787. Likened to existing ones, the value of the BOANFIST hybrid method is less.

Besides, the computational time comparison of BOANFIST and existing systems are represented in Fig. 15. The proposed BOANFIST approaches control the DXA/C system in less computation time. Computational time of BOA, GOA, and CS is 1.1 s, 1.2 s, and 1.23 s. Furthermore, the

Fig. 10. Performance of BOA system

Fig. 11. Performance analysis of GOA system

Fig. 12. Comparison of output performance with existing system

Fig. 13. Comparison of BOANFIST error with existing system

Fig. 14. Convergence comparison of BOANFIST and existing systems

Fig. 15. Comparison of BOANFIST and existing systems
accuracy comparison of BOANFIST with existing method is portrayed in Fig. 16. The proposed system attains 99.69% accuracy which is high when compared with the conventional approaches.

\[
P^*_rec = \frac{TP^*}{TP^* + FP^*} \tag{54}
\]

\[
R^*_ac = \frac{TP^*}{TP^* + FN^*} \tag{55}
\]

\[
S^*_pe = \frac{TN^*}{TN^* + FP^*} \tag{56}
\]

where \(TP^*\) and \(FP^*\) are the true and false positive as well as \(TN^*, FN^*\) mean true and false negative. BOANFIST and existing methods are shown in Fig. 17. The BOANFIST method attains 98% as well as 97.8%. The specificity comparison of BOANFIST and existing methods is portrayed in Fig. 18. The proposed method attains 97.8% recall value. Statistical analysis of BOANFIST and existing system is portrayed in Table 2. The mean value of the proposed system is 1.5420, the median is 1.5043 and standard deviation is 0.0509. The error comparison for 50 trials of the proposed system with conventional system is portrayed in Table 3.

The BOANFIST system accomplishes 0.01103 RMSE value. The BOANFIST system diminishes IAE, ITAE, and ISE to 0.0215, 0.000279 and 0.0002157 for 50 numbers of trials. Besides, the error comparison for 100 trials of the proposed system and conventional system is demonstrated in Table 4. Furthermore, the BOANFIST and existing systems is articulated in Table 5. The BOANFIST system accomplishes the value of 0.99 and 0.979. Furthermore, energy consumption of the proposed system is low. Smaller indoor sensible cooling load resulted in lower consumption of energy through the air conditioner. In conclusion, the proposed technique provide better outcomes than the existing method.

\[
Fig. 16. \text{Accuracy comparison of BOANFIST with existing techniques}
\]

\[
Fig. 17. \text{Recall and precision comparison of BOANFIST and existing methods}
\]

\[
Fig. 18. \text{Specificity comparison of BOANFIST with existing methods}
\]

\[
Table 2. \text{Statistic measures of BOANFIST and existing systems}
\]

<table>
<thead>
<tr>
<th>Technique</th>
<th>Mean</th>
<th>Median</th>
<th>S.D</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOANFIST</td>
<td>1.5420</td>
<td>1.5043</td>
<td>0.0509</td>
</tr>
<tr>
<td>BOA</td>
<td>1.5930</td>
<td>1.5502</td>
<td>0.0588</td>
</tr>
<tr>
<td>GOA</td>
<td>1.6467</td>
<td>1.6095</td>
<td>0.0617</td>
</tr>
<tr>
<td>CS</td>
<td>1.7096</td>
<td>1.6628</td>
<td>0.0635</td>
</tr>
</tbody>
</table>

\[
Table 3. \text{Error comparison of BOANFIST and existing methods for 50 number of trials}
\]

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>IAE</th>
<th>ITAE</th>
<th>ISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOA</td>
<td>0.0191</td>
<td>0.06327</td>
<td>0.001549</td>
<td>0.003392</td>
</tr>
<tr>
<td>GOA</td>
<td>0.0211</td>
<td>0.02633</td>
<td>0.0003478</td>
<td>0.0002656</td>
</tr>
<tr>
<td>CS</td>
<td>0.0134</td>
<td>0.03827</td>
<td>0.00129</td>
<td>0.00378</td>
</tr>
<tr>
<td>Proposed BOANFIST</td>
<td>0.01102</td>
<td>0.0214</td>
<td>0.000278</td>
<td>0.0002156</td>
</tr>
</tbody>
</table>

\[
Table 4. \text{Error comparison of BOANFIST and existing methods for 100 number of trials}
\]

<table>
<thead>
<tr>
<th>Method</th>
<th>RMSE</th>
<th>IAE</th>
<th>ITAE</th>
<th>ISE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOA</td>
<td>0.0234</td>
<td>0.0801</td>
<td>0.00278</td>
<td>0.00523</td>
</tr>
<tr>
<td>GOA</td>
<td>0.0366</td>
<td>0.0462</td>
<td>0.000427</td>
<td>0.000298</td>
</tr>
<tr>
<td>CS</td>
<td>0.0344</td>
<td>0.0428</td>
<td>0.000202</td>
<td>0.00393</td>
</tr>
<tr>
<td>Proposed BOANFIST</td>
<td>0.01981</td>
<td>0.0231</td>
<td>0.000328</td>
<td>0.000267</td>
</tr>
</tbody>
</table>
Table 5. Performance comparison of BOANFIST and existing approaches

<table>
<thead>
<tr>
<th>Method</th>
<th>Computational time (s)</th>
<th>Energy consumption (kWh/day)</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>Accuracy (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOA</td>
<td>1.1</td>
<td>18.05</td>
<td>98</td>
<td>97.8</td>
<td>95.37</td>
<td>99.09</td>
</tr>
<tr>
<td>GOA</td>
<td>1.2</td>
<td>19.25</td>
<td>79</td>
<td>82</td>
<td>93.61</td>
<td>97.68</td>
</tr>
<tr>
<td>CS</td>
<td>1.23</td>
<td>21.82</td>
<td>90</td>
<td>92</td>
<td>91.78</td>
<td>90.34</td>
</tr>
<tr>
<td>Proposed</td>
<td>1.01</td>
<td>16.42</td>
<td>95</td>
<td>94</td>
<td>99.69</td>
<td>93.36</td>
</tr>
</tbody>
</table>

6. CONCLUSION

A hybrid BOANFIST system is proposed in this paper for the DX-A/C system control of the indoor air temperature and humidity with FOPID controller. The suggested hybrid technique is a joint execution of ANFIS as well as BOA. The FOPID controller parameters are adjusted via the ANFIS approach and the weight matrices were predictable by the help of BOA method. The proposed BOANFIST method guarantees the system stability under large disturbances. At this point, the proposed model was executed at MATLAB/Simulink working stage. As a result, the proposed hybrid BOANFIST system effectively controls the temperature and indoor air with minimal computation reducing the complexity of the algorithm.

Data availability: Data sharing does not relate to this article, as no novel data was created or investigated under this study.

Funding information: This research did not receive any particular grant from funding agencies in the public, commercial, or non-profit sectors.

REFERENCES

