
Analysis for an open-source library in database
management systems

Rama Hayek1 and Mohammad Zaher Akkad2p

1 Department of Software Engineering and Information Systems, Faculty of Information Engineering,
University of Aleppo, Aleppo, Syria
2 Faculty of Mechanical Engineering and Informatics, Institute of Logistics, University of Miskolc,
Miskolc-Egyetemváros, Hungary

Received: November 21, 2023 • Revised manuscript received: February 2, 2024 • Accepted: February 8, 2024
Published online: May 13, 2024

ABSTRACT

Spatial data management is crucial for applications like urban planning and environmental monitoring.
While traditional relational databases are commonly used, they struggle with large and complex spatial
data. NoSQL databases provide support for unstructured data and scalability. This article compares the
performance and disk space usage of SQL Server (a relational database) and MongoDB (NoSQL
database) using an open-source library. Experiments conducted with the OpenStreetMap dataset from
Central America show that the MongoDB database outperformed the relational SQL Server database in
most cases, offering practical advantages for spatial data management in Geographic Information
System applications.

KEYWORDS

spatial data, relational database, NoSQL, OpenStreetMap

1. INTRODUCTION

Geographic Information Systems (GIS) are computer-based systems used to manage, store,
manipulate, analyze, and present spatial or geographic data [1]. GIS data typically involves
many types of data, like maps, satellite images, and geospatial data [2]. The management and
analysis of GIS data are traditionally done using Relational DataBase Management Systems
(RDBMS) due to their strong data consistency, transactional support, and Atomicity, Con-
sistency, Isolation, and Durability (ACID) properties [3]. Relational databases have been used
as a strong base for managing and storing spatial data objects for close to two decades [4].
In today’s world, with the increasing growth of geolocated and geospatial data ranging from
satellite images with massive volumes to user-generated content that has varied formats,
performance, and scalability challenges appeared with Structured Query Language (SQL)
relational databases [3]. Due to these limitations, companies need to develop efficient ways to
improve response time both when data is provided and retrieved. Non-relational SQL
(NoSQL) databases are one of the techniques that have emerged in the recent past to handle
requests for large datasets [2, 4]. Many organizations now use NoSQL to manage their GIS
data [5]. NoSQL databases are more flexible and scalable and can handle large quantities of
unstructured and semi-structured data, making them well-suited for managing geospatial
data [6].

The objective of this article is to create an open-source library that enables the analysis of
query performance and disk space utilization in two commonly used DataBase Management
Systems (DBMSs): SQL Server and MongoDB. Both systems are capable of handling spatial
data making them suitable for querying spatial datasets. This article contributes to existing
literature by introducing an open-source library developed using C# programming language
on a console application that can be utilized within DBMS or GIS modules. It also

Pollack Periodica •

An International Journal
for Engineering and
Information Sciences

19 (2024) 2, 30–35

DOI:
10.1556/606.2024.00990
© 2024 The Author(s)

ORIGINAL RESEARCH
PAPER

pCorresponding author.
E-mail: qgezaher@uni-miskolc.hu

Unauthenticated | Downloaded 04/26/25 04:56 PM UTC

https://orcid.org/0000-0002-1269-6274
https://doi.org/10.1556/606.2024.00990
https://crossmark.crossref.org/dialog/?doi=10.1556/606.2024.00990&domain=pdf
mailto:qgezaher@uni-miskolc.hu

investigates and compares the query performance and disk
space usage of relational and NoSQL databases, both of
which are extensively employed in spatial analysis.

2. THEORETICAL BACKGROUND

Traditionally, geospatial databases as Oracle Spatial and
PostGIS have been effective tools for managing geospatial
data. They provide spatial data types, indexing capabilities,
and spatial operations that are specifically designed for
handling geospatial information. In the past decade, the
availability of GPS-enabled devices has led to a significant
increase in geospatial data production. This has resulted in
the emergence of “Geospatial Big Data,” which refers to the
unstructured and semi-structured location-based data
generated [7]. While SQL relational databases were tradi-
tionally effective for managing geospatial data, the rise of
geospatial big data has necessitated more efficient handling
and storage solutions. NoSQL databases have emerged as
promising alternatives, offering improved performance and
scalability for managing geospatial big data. These databases
are specifically designed to handle large-scale and unstruc-
tured data, making them well-suited for the challenges
associated with geospatial big data [8]. NoSQL databases do
not use tables, rows, and columns to organize and store data.
Instead, they use a variety of data models that do not require
a predefined schema. Different types of NoSQL DBMSs are

� Key-Value Store (e.g., DynamoDB);
� Document Store (e.g., MongoDB and CouchDB);
� Wide Column Store/Column Families (e.g., Hadoop/

HBase and Cassandra); and
� Graph Databases (e.g., Neo4J and OrientDB) [9].

NoSQL databases are considered one of the techniques to
handle the emergent requirements of geo-big data [6]. To
aid decision-making when selecting and optimizing geo-
spatial database systems, comparative studies between SQL
and NoSQL DBMSs have highlighted the varying strengths
and limitations of different systems. In addition, there are
several frameworks available for evaluating geospatial data-
bases like GEOYCSB, Geographica, and GeoBenchmark
Suite. Each framework offers its own set of features and
performance metrics for assessing the efficiency and suit-
ability of geospatial database solutions. Researchers have
proposed frameworks that consider factors like query opti-
mization, application performance estimation, and
measuring disk space, helping to navigate the complex
landscape of selecting an appropriate DBMS for GIS appli-
cation. There are two main reasons behind relying on the
DBMSs (SQL Server and MongoDB) [10–12]. First, they
both support spatial data types. Second, they possess a large
user base.

Starting with a brief literature review, there has been a
growing interest in recent years in finding a balance between
traditional relational databases and the emerging opportu-
nities offered by NoSQL databases. As a result, several
studies have been conducted to compare the performance of

these two database types. For example, one study [13] spe-
cifically compared the performance of MongoDB, a popular
NoSQL document-oriented database, with SQL database in
terms of executing common queries. The findings of this
study indicated that MongoDB often outperformed SQL in
terms of speed and overall performance. Another study [11]
focused on examining the performance of MongoDB and
PostGIS, a spatial extension for SQL databases, in handling
geospatial data. The researchers assessed the loading capa-
bilities of both databases using a NodeJS-based web appli-
cation that simulated large amounts of geospatial data.
Although the results of the study indicated that MongoDB
outperformed PostGIS in loading geospatial data, they might
differ in real-world scenarios with actual geospatial data and
complex queries. In 2018, the study [14] conducted a per-
formance comparison between a document-based NoSQL
database and a relational database for Voluntary Geographic
Information System (VGIS) data storage architecture. The
study suggested the advantages of the document-based
NoSQL database in terms of feasibility and performance, but
it lacks consideration of more complex types of queries and
comparing metrics. Furthermore, the study [15] in 2020
provided a detailed analysis of Create, Read, Update, and
Delete (CRUD) operations and their impact on application
performance. The study compared the well-known MySQL
database with CouchDB, a less-studied non-relational
database. The analysis considered a complex database sce-
nario with multiple joins and explored different data struc-
tures. This study used a comprehensive analysis of CRUD
operations and query complexity. However, the number of
records used is relatively small, which may not fully capture
scalability and performance challenges at larger scales.
Additional studies [4, 16, 17] also contributed to the un-
derstanding of the performance advantages of MongoDB in
specific scenarios and query types. All these studies pri-
marily focused on reading queries and did not extensively
investigate writing operations.

Based on the research gaps in the previously mentioned
literature, this article aims to provide a comprehensive
evaluation of SQL Server and MongoDB by considering the
complete CRUD operations and disk space utilization using
the openly available OpenStreetMap (OSM) dataset of
Central America. By analyzing both the query performance
and disk space aspects, database management systems
analysis is covered. The research involves the development
of an open-source library for spatial query performance
analysis. By comparing the spatial query performance of
SQL Server and MongoDB, this research aims to provide
valuable insights that can facilitate informed decision-mak-
ing in the field of spatial data management. To sum up, the
contributions of the article are as follows:

� The evaluation of the spatial query performance and
disk space usage of SQL Server and MongoDB is pro-
vided, considering their support for spatial data types;

� An open-source library is developed that facilitates the
analysis of query performance between these two-
database management systems;

Pollack Periodica 19 (2024) 2, 30–35 31

Unauthenticated | Downloaded 04/26/25 04:56 PM UTC

� The experiments are conducted on the openly avail-
able OSM dataset of Central America, ensuring the
relevance and practicality of the findings;

� The outcomes of this article provide a valuable
resource for organizations and practitioners seeking
effective geospatial data management and decision-
making processes;

� Outcomes have significant implications for GIS edu-
cation, as the used methodology enables the teaching
of both relational and NoSQL DBMSs using real-life
datasets.

3. APPLIED METHODOLOGY

This article focuses on analyzing the query performance of
CRUD operations on two well-known database management
systems: SQL Server and MongoDB. The methodology in-
volves several steps to ensure a comprehensive analysis. The
first step is to import the openly available OSM locations
dataset of Central America into the SQL Server. This initial
import is crucial to ensure that each record in the dataset has
a unique identifier, which may not be readily available in the
raw data. Next, the OSM dataset is converted into GeoJSON
objects, which serve as the basis for importing the data into
MongoDB. This conversion step allows for a comparative
analysis between SQL Server andMongoDB, as both databases
will have access to the same dataset in a compatible format.

In the experiments, real-world mechanisms used by
businesses and enterprises were simulated by considering
the actual transaction registration model employed by
database engines. Standard commands were used like
INSERT instead of more efficient instructions like Bulk
Insert to accurately reflect real-world data insertion patterns
[13]. This principle applies to other basic commands as well,
like DELETE and UPDATE. By simulating the transaction
registration model commonly used by businesses, the
performance of SQL Server and MongoDB is evaluated
accurately under realistic conditions.

Regarding the querying of data, queries are divided into
two categories: selecting all data and k-Nearest Neighbors
(kNN) queries [17]. Selecting all data is important for data
verification, exploration, and performance benchmarking,
allowing researchers to ensure data accuracy, understand its
structure, and establish a performance baseline. On the other
hand, kNN queries are essential for spatial analysis and
location-based applications, enabling the evaluation of
database systems’ efficiency and accuracy in handling
proximity searches. By dividing the queries into these cate-
gories, the article covers fundamental data retrieval and
spatial analysis aspects, providing a comprehensive assess-
ment of the database systems’ performance and capabilities.

The final test involves measuring the disk space utiliza-
tion of the two databases: SQL Server and MongoDB. This
test aims to evaluate the storage efficiency and space con-
sumption of each database system. By comparing the disk
space requirements of the two databases, researchers can

assess their effectiveness in managing and storing the dataset
from a storage utilization perspective. This analysis provides
insights into the efficiency of data storage and can help
inform decisions regarding database sizing, resource allo-
cation, and cost optimization. By incorporating these con-
siderations into the experimental design, it was ensured to
align closely with the actual mechanisms and challenges
faced by GIS businesses and applications.

4. EXPERIMENTS AND ANALYSIS

The aim is to develop an open-source library that facilitates
systematic query performance and disk storage analyses
between SQL Server and MongoDB. Conducting a
comparative study involves performing multiple experi-
ments to gather results for analysis. These results are then
used to evaluate and discuss the performance characteristics
and disk space utilization of the two database systems. The
applied source code can be found on GitHub [18].

4.1. Application data

The data was extracted from the OSM [19], which is a free
and open-source project that aims to create a map of the
world using crowdsourced data. The OSM dataset is a
collection of geospatial data that has been contributed by
users all over the world. This dataset includes information
on roads, buildings, land use, points of interest, and other
geographic features. The OSM dataset is available in a variety
of formats, including XML and PBF (used in the article).

The OSM dataset is used by various organizations and
individuals for various applications, including navigation,
urban planning, disaster response, and environmental
analysis. It offers a collaborative and constantly updated
source of geospatial data [20]. The experiments were
executed on four OSM datasets that contain different
numbers of location points. The numbers of location points
in all datasets are as follows: (1,000,000, 10,000,000,
20,000,000, 30,000,000). All experiments were conducted on
a CORE i5, 12 GB RAM laptop with a Windows 11, 64 bit
operating system.

4.2. Applied tests

In the study, the OSM data was stored in both SQL Server
and MongoDB (utilizing the 2dsphere index for efficient
spatial querying). Additionally, no constraints were applied
to the databases. The execution of queries was performed on
a single node without distributed computing. The following
presents the results of the experiments, as well as the anal-
ysis. The limitations of the experiments are also presented
and discussed.

4.2.1. Performance analysis. Experiments in this research
include the insert, update, delete, and comprehensive select
queries on the two database engines. First, the SQL language
queries were designed to run on an MS SQL Server database.
Then the queries were converted to the same queries in

32 Pollack Periodica 19 (2024) 2, 30–35

Unauthenticated | Downloaded 04/26/25 04:56 PM UTC

MongoDB syntax to run in MongoDB. For evaluating the
performance operations, 10,000 data points have been chosen
as an average sample for the number of records, which is being
selected in most of the related studies. The comparison of the
taken time to run the queries on both databases will be shown
in the experimental results. The execution times were taken in
microseconds in both relational and NoSQL databases.

In the following, one subsection is assigned to each
experiment, in which the desired operation or query is
expressed, and the results are illustrated.

4.2.2. Insert operations. The results of the insert operations
in both databases in the previously mentioned size scales,
along with 10,000 records at a time, indicate that SQL Server
performs insert operations at a higher speed compared to
MongoDB with SQL Server being approximately two times
faster in completing the insert operations. In fact, Mon-
goDB’s insert performance can be optimized when inserting
entire documents at once, as it eliminates the need for in-
dividual row-level processing. On the other hand, SQL
Server’s relational structure requires explicit data type defi-
nitions for each column, which can lead to faster insert
performance in certain scenarios, especially when inserting
one record at a time. The results are shown in Fig. 1.

4.2.3. Delete operations. The delete operations have also
been evaluated in these experiments. The results in Fig. 2
show that MongoDB outperforms SQL by a factor of about
13 times when the number of records reaches 30 million.

4.2.4. Update operations. Update operations were per-
formed with the same database size scales in this subsection.
As can be seen from the results, the MongoDB database
engine has absolute superiority especially when data sizes
increase. The results are shown in Fig. 3.

4.3. Querying in different modes

Regarding the query on the data, as mentioned earlier,
queries have been divided into two main queries (Q1 and
Q2), and the results are to be reviewed.

4.3.1. Q1 loading all locations. The goal of the first query
is to retrieve all locations from both the SQL Server and
MongoDB databases. This query helps assess the efficiency
of retrieving and handling a large volume of geospatial data
from the NoSQL database. By testing the query’s perfor-
mance, scalability, and response time, GIS analysts can
evaluate the database’s ability to handle and process exten-
sive geospatial datasets. This query is particularly useful in
assessing the overall data loading capabilities and ensuring
that the NoSQL database can effectively handle the entire
geospatial dataset without any bottlenecks or performance
issues.

4.3.2. Q2 k nearest neighbors’ analysis. kNN queries,
which involve finding the nearest neighbors of a query
instance, are widely used in GIS and other fields for tasks
like data classification and clustering. Researchers have
dedicated significant attention to optimizing kNN opera-
tions. This subsection discusses the experimental setup and
findings of a kNN query comparison between SQL Server
and MongoDB. In this experiment, a random point is
selected, and its nearest neighbors are determined based on
its coordinates.

The k of the nearest 1,000 was selected as an average
value of k as in the related studies [16, 17]. The aim is to find
the nearest points to a specific given point, ordered by dis-
tance. This particular query is essential for assessing the
efficiency of a database in conducting proximity-based
searches, which is crucial in various geospatial analysis tasks.
These tasks often involve finding nearby locations, per-
forming spatial clustering, or executing spatial joins. By
evaluating the response time and accuracy of the query, GIS
analysts can determine the database’s suitability for handling
geospatial analysis tasks that heavily rely on proximity-based
operations.

In SQL Server, to calculate the neighbors’ points, using
spatial extensions like the Geometry Data Type and spatial
functions for distance like Euclidean distance would typi-
cally be needed. On the other hand, in MongoDB, the $near
operator is used to find and sort the documents based on
their proximity to the specified point. The results are then
limited to 1,000 points using the limit function. For the first
query Q1, the average execution times are cleared in the
following figures.

After analyzing the graph in Figs 4 and 5, it becomes
evident that MongoDB consistently outperforms SQL Server
in all scenarios, ranging from small datasets to large datasets.
For the second query Q2, query execution times are pre-
sented as follows.

Also, from Figs 6 and 7, it is observed that the kNN
loading time for MongoDB in Q2 is significantly smaller

Fig. 1. INSERT execution times in SQL Server and MongoDB

Fig. 2. DELETE execution times in SQL Server and MongoDB

Fig. 3. UPDATE execution times in SQL Server and MongoDB

Pollack Periodica 19 (2024) 2, 30–35 33

Unauthenticated | Downloaded 04/26/25 04:56 PM UTC

compared to that of MS SQL Server as the number of data
grows. On smaller datasets, the response time difference is
less significant compared to the larger dataset.

4.4. Disk space analysis

Regarding disk space usage, the NoSQL proved to be a better
solution (see Fig. 8). MongoDB demonstrates more efficient
disk space usage compared to SQL Server for the same
amount of data, primarily due to its flexible, schema-less
format and the absence of relational overhead such as
transaction logs and metadata management.

5. CONCLUSIONS

The research conducted in this article aimed to investigate
the performance and disk space utilization in GIS applica-
tions using both relational and NoSQL databases. The
results consistently demonstrated that MongoDB, a NoSQL
database, outperformed relational databases in most cases.
The superior performance of MongoDB makes it an

advantageous choice for handling the complex querying
needs of these systems, where real-time data retrieval and
processing are critical.

The findings are specific to the investigated versions of
SQL Server and MongoDB but remain valuable for teach-
ing GIS based on relational DBMSs. The developed library
has the potential to teach both relational and NoSQL
DBMSs using real-life datasets and can be expanded to
support other DBMSs. Future research directions include
analyzing more spatial data types like line and multi-line
objects. The article can also propose expanding the test
scope to encompass important spatial features, as geo-
metric operations, spatial indexing strategies, and support
for 3d/4d spatial data to further evaluate the practical
applicability and performance of the geospatial databases
in diverse scenarios.

REFERENCES

[1] H. Goyal, C. Sharma, and N. Joshi, “An integrated approach of

GIS and spatial data mining in big data,” Int. J. Comput. Appl.,

vol. 169, no. 11, pp. 1–6, 2017.

[2] W. Tampubolon, W. Reinhardt, S. Sumaryono, and S. T. L.

Tobing, “NoSQL standard and approach for geospatial database

collection,” in Seminar Nasional Geomatika, Cibinong, Indonesia,

April 14, 2021, pp. 321–326.

[3] E. Baralis, A. D. Valle, P. Garza, C. Rossi, and F. Scullino, “SQL

versus NoSQL databases for geospatial applications,” in IEEE In-

ternational Conference on Big Data, Boston, MA, USA, December

11–14, 2017, pp. 3388–3397.

[4] S. Agarwal and K. S. Rajan, “Analyzing the performance of NoSQL

vs. SQL databases for Spatial and Aggregate queries,” in Confer-

ence Proceedings on Free and Open-Source Software for Geospatial,

vol. 17, Boston, USA, September 20, 2017, Art no. 2.

[5] M. Hasan, E. Panidi, and V. Badenko, “Comperative evaluation of

NoSQL and relational databases performance while analysing semi

structured GeoSpatial Data,” in International Scientific Conference

GEOBALCANICA, Saint Petersburg, Russia, August 22, 2019,

pp. 541–549.

[6] D. Guo and E. Onstein, “State-of-the-art geospatial information

processing in NoSQL Databases,” ISPRS Int. J. Geo-Information,

vol. 9, no. 5, 2020, Art no. 331.

[7] J. G. Lee and M. Kang, “Geospatial big data: Challenges and

opportunities,” Big Data Res., vol. 2, no. 2, pp. 74–81, 2015.

[8] Z. Liu, H. Guo, and C. Wang, “Considerations on geospatial big

data,” IOP Conf. Ser. Earth Environ. Sci., vol. 46, 2016, Art no.

012058.

[9] J. K. Chen and W. Z. Lee, “An introduction of NoSQL databases

based on their categories and application industries,” Algorithms,

vol. 12, no. 5, 2019, Art no. 106.

[10] T. Jia, X. Zhao, Z. Wang, D. Gong, and G. Ding, “Model trans-

formation and data migration from relational database to Mon-

goDB,” in Proceedings of IEEE International Congress on Big Data,

San Francisco, CA, USA, June 27–July 02, 2016, pp. 60–67.

[11] D. Laksono, “Testing spatial data deliverance in SQL and NoSQL

database using NodeJS fullstack web app,” in Proceedings of 4th

Fig. 4. Q1 average execution times in SQL Server

Fig. 6. Q2 average execution times in SQL Server

Fig. 5. Q1 average execution times in MongoDB

Fig. 7. Q2 average execution times in MongoDB

Fig. 8. Comparing disk space between SQL Server with MongoDB
(size in GB)

34 Pollack Periodica 19 (2024) 2, 30–35

Unauthenticated | Downloaded 04/26/25 04:56 PM UTC

International Conference on Science and Technology, Yogyakarta,

Indonesia, August 7–8, 2018, pp. 1–5.

[12] Geospatial queries, 2023. [Online]. Available: https://www.mongodb.

com/docs/manual/geospatial-queries/. Accessed: Nov. 1, 2023.

[13] S. H. Aboutorabi, M. Rezapour, M. Moradi, and N. Ghadiri,

“Performance evaluation of SQL and MongoDB databases for big

e-commerce data,” in International Symposium on Computer

Science and Software Engineering, Tabriz, Iran, August 18–19,

2015, pp. 1–7.

[14] D. C. M. Maia, M. Holanda, and B. D. C. Camargos, “Performance

analysis on voluntary geographic information systems with

document-based NoSQL Database,” in Proceedings on De-

velopments and Advances in Intelligent Systems and Applications,

Maristela, Holandia, Maristela, January 1, 2018, pp. 181–197.

[15] C. A. Győrödi, D. V. Dumşe-Burescu, D. R. Zmaranda, R.

Győrödi, G. A. Gabor, and G. D. Pecherle, “Performance analysis

of NoSQL and relational databases with CouchDB and MySQL

for application’s data storage,” Appl. Sci., vol. 10, no. 23, 2020,

Art no. 8524.

[16] _I. B. Coşkun, S. Sertok, and B. Anbaro�glu, “K-nearest neighbor

query performance analysis on a large-scale taxi dataset: Post-

greSQL vs. MongoDB,” Int. Arch. Photogrammetry, Remote

Sensing Spat. Inf. Sci., vol. XLII-2/W13, pp. 1531–1538, 2019.

[17] B. Anbaro�glu and A. Mobasheri, “Spatial query performance ana-

lyses on a big taxi trip origin-destination dataset,” in Proceedings on

Open Source Geospatial Science for Urban Studies, Lecture Notes in

Intelligent Transportation and Infrastructure, vol. 2020, pp. 37–53.

[18] Applied source code, 2024. [Online]. Available: https://github.

com/remihk94/source_lib. Accessed: Jan. 30, 2024.

[19] OpenStreetMap, 2023. [Online]. Available: https://www.

openstreetmap.org/about. Accessed: Nov. 1, 2023.

[20] OpenStreetMap and its use as open data, 2023. [Online].

Available: https://www.e-education.psu.edu/geog585/node/738.

Accessed: Nov. 1, 2023.

Open Access statement. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited, a link to the CC License is provided, and changes – if any – are indicated. (SID_1)

Pollack Periodica 19 (2024) 2, 30–35 35

Unauthenticated | Downloaded 04/26/25 04:56 PM UTC

https://www.mongodb.com/docs/manual/geospatial-queries/
https://www.mongodb.com/docs/manual/geospatial-queries/
https://github.com/remihk94/source_lib
https://github.com/remihk94/source_lib
https://www.openstreetmap.org/about
https://www.openstreetmap.org/about
https://www.e-education.psu.edu/geog585/node/738
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Outline placeholder
	Analysis for an open-source library in database management systems
	Introduction
	Theoretical background
	Applied methodology
	Experiments and analysis
	Application data
	Applied tests
	Performance analysis
	Insert operations
	Delete operations
	Update operations

	Querying in different modes
	Q1 loading all locations
	Q2 k nearest neighbors' analysis

	Disk space analysis

	Conclusions
	References

