COHOMOGENEITY ONE G-PSEUDOMANIFOLDS

R. POPPER

Abstract

In this note we prove structure theorems for cohomogeneity one G-pseudomanifolds (i.e. with a one dimensional orbit space), which generalize the well-known results for smooth G-manifolds, see [1, 2]. The concept of a G-pseudomanifold was introduced by the author in [3], where the basic theory is developed.

§1. Introduction

To begin we first recall some definitions given in [3] which will be used in this work.

Given a topological space X its open cone, denoted by cX, is defined as follows: $cX = X \times [0,1)/(x,0) \sim (x',0)$. Let [x,r] denote the corresponding equivalence class and * the distinguished point [x,0]. For $X = \emptyset$ we let $cX = \{*\}$.

Now let G be a compact Lie group. By a G-space we mean a completely regular space X, together with a continuous action $G \times X \to X$.

Let $G_x = \{g \in G : g \cdot x = x\}$ be the isotropy subgroup of G at $x \in X$. Also let X/G denote the corresponding orbit space with the quotient topology induced by the canonical projection $\pi: X \to X/G$.

There is a canonical action on cX, which is the following: $g \cdot [x, r] = [g \cdot x, r]$, where $g \in G$, $x \in X$, $r \in [0, 1)$. Notice that the distinguished point * of cX is G-fixed.

If X is a G-space, we now define the concept of a conical slice.

DEFINITION 1.1. Given an orbit P in X, then a slice S_x in X at $x \in P$ is called a *conical slice* of P if it satisfies the following condition:

There is a compact H-space L (possibly empty), without fixed points, called a link of P, where $H = G_x$, together with an H-equivariant homeomorphism $\phi: S_x \to \Re^{i_0} \times cL$, for an integer $i_0 \ge 0$, where H acts trivially on \Re^{i_0} .

For the definition of slices, and their existence in a completely regular G-space, see [1], pp. 82–86.

¹⁹⁹¹ Mathematics Subject Classification. Primary 54H15; Secondary 57N80. Key words and phrases. G-pseudomanifolds, structure theorems, cohomogeneity one.

14 R. POPPER

Now we define the concept of a G-pseudomanifold.

DEFINITION 1.2. A (-1)-dimensional G-pseudomanifold is the empty set. An n-dimensional G-pseudomanifold $(n \ge 0)$ is a G-space X, with a connected orbit space X/G, satisfying the following condition:

(C) Each orbit P in X has a conical slice $S_x \cong^{\phi} \Re^{i_0} \times cL$, such that L is an n-i-1-dimensional H-pseudomanifold, where $i=i_0+\dim G/H\neq n-1$.

Note that this definition is more restrictive than the one given in [3]. Here are some examples.

(1) Let G be a compact Lie group acting locally linearly on a completely regular manifold M, [1, p. 171]. Assume that the orbit type filtration of M has no strata of codimension one, and M/G is connected. Claim M is a G-pseudomanifold.

The proof is by induction on the dimension of M. For dim M=0 it is trivial. Assume that the claim is valid for manifolds with dimension strictly smaller than dim M.

Given an orbit P in M, choose a point $x \in P$ with $G_x = H$. Consider a linear slice $S_x \cong E$ at x in M, where H acts orthogonally on a Euclidean space E. Let $V = (E^H)^{\perp}$ denote the orthogonal complement of E^H with respect to an H-invariant inner product on E. Put E to be the unit sphere of E with respect to the associated E-invariant metric.

Since $L \cong S^l$, where $l+1 = \dim V$, we can put a smooth structure on L, which is independent of the choice of an orthonormal basis for V. Clearly, $H \times L \to L$ is locally linear [1, p. 308], since H acts smoothly on V, and L is a submanifold.

Hence there is an H-equivariant homeomorphism $S_x \cong E^H \oplus (E^H)^{\perp} \cong \Re^{i_0} \times cL$, where $i_0 = \dim E^H$. By the inductive hypothesis, we have that L is an H-pseudomanifold. Therefore M is a G-pseudomanifold.

(2) Let G be a compact Lie group which acts smoothly on a paracompact manifold M, and H a closed normal subgroup of G. Then $\Phi: G \times M \to M$ induces a canonical action $\widetilde{\Phi}: G/H \times M/H \to M/H$. We shall examine when M/H is a G/H-pseudomanifold.

Choose a Riemannian metric on M invariant under G. Then we have $N_x(H\cdot x) = T_x(H\cdot x)^\perp \oplus N_x(G\cdot x)$ for $x\in M$, where N_x denotes the orthogonal complement in $T_x(M)$, and \bot the orthogonal complement in $T_x(G\cdot x)$. Now for some r>0, there is a Riemannian normal coordinate system at x of radius r. Let U_x be the union of geodesic segments of length less than r, starting from x in a direction orthogonal to $H\cdot x$. Then U_x is a linear K-slice at x in M, for $K=G_x\cap H$. Clearly, U_x contains a linear G_x -slice S_x .

Now if $\pi: M \to M/H$ is the canonical projection then $\pi(U_x) \cong U_x/K$. Hence $\pi(S_x) \cong S_x/K$, which we consider embedded in M/H. Clearly, the