Search Results

You are looking at 91 - 100 of 131 items for

  • Author or Editor: S. Kumar x
  • Refine by Access: All Content x
Clear All Modify Search

The solid-state deaquation of thetrans- andcis-oximates of lawsone (I) and phthiocol (II) with cobalt(II) was investigated by means of non-isothermal thermogravimetry. The modes of deaquation during the thermolyses of hydrated oximates of (I) and (II) with compositions CoL2·2H2O were compared. The weight lossvs. temperature data were treated by using the Coats and Redfern relations. The kinetic data support a rearrangement-type mechanism for the deaquation of the oximate of phthiocol. TheE a values for both the ligands and water molecules were found to be ∼23 kJ/mol.

Restricted access

Abstract

12-Molybdophosphoric acid (MPA) supported on V2O5 dispersed γ-Al2O3 catalysts with different loadings were prepared and characterized by BET surface area, X-ray diffraction, FT-infrared, laser Raman, X-ray photoelectron spectroscopy and temperature programmed reduction techniques. The catalytic activities were evaluated for the aerobic oxidation of benzyl alcohol. The conversion of benzyl alcohol increased with the amount of MPA content and the catalyst with 15 wt% of MPA showed highest activity. The synergistic effect of V2O5 and MPA was observed for the oxidation of benzyl alcohol compared to MPA on alumina without V2O5. The XPS results suggest the participation of both Mo and V in the reaction as the used catalysts showed the reduced oxidation states of both Mo and V. The high selectivity of the catalysts is due to the presence of V2O5, which induces the redox nature to the catalyst and also preventing the decomposition of MPA on Al2O3.

Restricted access

Effects of salinity on correlation, path and stress indices, yield and its components were studied in a set of 34 promising rice genotypes collected from various national and international organizations. These genotypes were evaluated in a randomized complete block design with three replications during the wet seasons (kharif) of 2009 and 2010 in normal (ECiw ∼ 1.2 dS/m) and salinity stress (ECiw ∼ 10 dS/m) environments in micro plots at Central Soil Salinity Research Institute (CSSRI), Karnal, India. Grain yield per plant showed positive significant association with plant height, total tillers, productive tillers, panicle length, and biological yield per plant and harvest index under normal environment, whereas grain yield showed positive significant association with biological yield and harvest index under salinity stress. These results clearly indicate that selection of high yielding genotypes would be entirely different under normal and saline environments. The stress susceptibility index (SSI) values for grain yield ranged from 0.35 (HKR 127) to 1.55 (TR-2000-008), whereas the stress tolerance index (STI) values for grain yield ranged from 0.07 (PR 118) to 1.09 (HKR 120). The genotypes HKR 120, HKR 47 and CSR-RIL-197 exhibited higher values of stress tolerance index (STI) in salinity. Under salinity, negative and significant association was shown by SSI and grain yield in contrast to positive and significant association shown by STI and grain yield. These associations could be useful in identifying salt tolerant and sensitive high yielding genotypes. The stress susceptible and stress tolerance indices suggest that the genotypes developed for salinity tolerance could exhibit higher tolerance, adaptability and suitability. Harvest index and biological yield traits emerged as the ideal traits for improvement through selection and could be used to increase the rice productivity under saline stress environments.

Restricted access

Indiscriminate use of antibiotics in apicultural practices may lead to contamination of otherwise healthy and naturally produced honey. Contamination not only affects honey quality but also pose significant health risks to consumers. In this context, one hundred raw honey samples from India were analysed for presence of antibiotic residues. For determination of oxytetracycline and erythromycin, high performance liquid chromatography and for chloramphenicol, enzyme immunoassay based validated procedures were used. Oxytetracycline and erythromycin with concentrations above maximum tolerance limits were detected in 24% and 2% samples, respectively. None of the samples contained chloramphenicol residues. Although, total dietary intake of detected antibiotics through honey was found to be <1% of their acceptable daily intake values, the presence of antibiotics in honey is an alarming health concern for people following customary honey feeding. The outcomes underline the need of inter-sectoral approaches to create awareness among beekeepers regarding health risks associated with residues of antibiotics in honey and merits of approved apicultural practices. Therefore, to meet global food safety requirements, continual residue monitoring schemes along with enlightenment of beekeepers on scientific beehive management and risks associated with incautious apicultural practices are of vital importance.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
M. Alrakabi
,
G. Singh
,
A. Bhalla
,
S. Kumar
,
S. Kumar
,
A. Srivastava
,
B. Rai
,
N. Singh
,
J. Shahi
, and
D. Mehta

Abstract  

The elemental concentration of uranium in the samples collected from the ground water and the canal water in the Bathinda district of Punjab state, India, have been investigated using X-ray fluorescence technique. The residues obtained after drying the water samples were analysed using the energy dispersive X-ray fluorescence spectrometer consisting of Mo-anode X-ray tube equipped with selective absorbers as an excitation source and an Si(Li) detector. The uranium concentration values in significant fraction of the shallow ground water samples from the hand pumps is found to be above the permissible level of 15 ppb recommended by World Health Organisation for the drinking water, and its values in the canal water samples are below 5 ppb. To investigate the flyash from the coal-fired thermal power plants as a possible source of ground water contamination, the water samples collected from the surroundings of the power plants and the flyash samples were also analyzed. The results rule out flyash as a source of uranium contamination. Agrochemical processes occurring in the calcareous soils in the region are the favoured potential source of uranium contamination of the ground water.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
S. Ravi
,
S. Ravi
,
A. K. Deepa
,
A. K. Deepa
,
S. Susheela
,
S. Susheela
,
P. V. Achuthan
,
P. V. Achuthan
,
S. Anil Kumar
, and
U. Jambunathan

Summary  

A method has been developed for the estimation of 90Sr in reprocessed uranium oxide samples obtained from the Purex processing of natural uranium spent fuel discharged from the research reactor. The method employs a combination of precipitation and solvent extraction procedure to eliminate other beta-impurities prior to resorting to the estimation of 90Sr by beta-counting. 106Ru was eliminated by volatalizing with perchloric acid, uranium was removed by carrier precipitation with strontium as sulphate. The sulphate precipitate was converted to carbonate and dissolved in nitric acid. 234Th and 234Pa were eliminated by synergistic solvent extraction using tri-n-butyl phosphate and thenoyl trifluoroacetone extractant mixture in xylene. An iron scavenging step was included to remove any residual impurities. Finally, strontium is precipitated as SrC2O4 . H2O. The separated 90Sr activity was followed to check the equilibrium growth of 90Y.

Restricted access

Abstract

Solid–liquid phase equilibrium data of three binary organic systems, namely, 3-hydroxybenzaldehyde (HB)—4-bromo-2-nitroanilne (BNA), benzoin (BN)—resorcinol (RC) and urea (U)—1,3-dinitrobenzene (DNB), were studied by the thaw–melt method. While the former two systems show the formation of simple eutectic, the third system shows the formation of a monotectic and a eutectic with a large immiscibility region where two immiscible liquid phases are in equilibrium with a liquid of single phase. Growth kinetics of the pure components, the monotectic and the eutectics, studied by measuring the rate of movement (v) of solid–liquid interface in a thin U-tube at different undercoolings (ΔT) suggests the applicability of the Hillig–Turnbull’s equation: v = uT) n , where v and n are the constants depending on the nature of the materials involved. The thermal properties of materials such as heat of mixing, entropy of fusion, roughness parameter, interfacial energy, and excess thermodynamic functions were computed from the enthalpy of fusion values, determined by differential scanning calorimeter (Mettler DSC-4000) system. The role of solid–liquid interfacial energy on morphologic change of monotectic growth has also been discussed. The microstructures of monotectic and eutectics were taken which showed lamellar and federal features.

Restricted access
Acta Chromatographica
Authors:
M. Ganesh
,
B. Thangabalan
,
R. Patil
,
D. Thakur
,
A. Kumar Kumar
,
M. Vinoba
,
S. Ganguly
, and
T. Sivakumar

Summary

A rapid, simple and validated reversed-phase high-performance liquid chromatographic method has been developed for analysis of oxaprozin in pharmaceutical dosage forms. Oxaprozin was separated on an ODS analytical column with a 45:55 (v/v) mixture of acetonitrile and triethanolamine solution (5 mm, pH 3.5 ± 0.05, adjusted by addition of 85% phosphoric acid) as mobile phase at a flow rate of 2.0 mL min–1. The effluent was monitored by UV detection at 254 nm. Calibration plots were linear in the range 160 to 240 μg mL–1 and the LOD and LOQ were 14.26 and 41.21 μg mL–1, respectively. The high recovery and low relative standard deviation confirm the suitability of the method for routine QC determination of oxaprozin in tablets.

Open access

A lipase from the thermophilic isolate Bacillus coagulans BTS-3 was produced and purified. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The purified lipase was immobilized on silica and its binding efficiency was found to be 60%. The enzyme took 60 min to bind maximally onto the support. The pH and temperature optima of immobilized lipase were same as those of the free enzyme, i.e. 8.5 and 55ºC, respectively.  The immobilized enzyme had shown marked thermostability on the elevated temperatures of 55, 60, 65 and 70ºC. The immobilized enzyme was reused for eigth cycles as it retained almost 80% of its activity. The catalytic activity of immobilized enzyme was enhanced in n-hexane and ethanol. The immobilized enzyme when used for esterification of ethanol and propionic acid showed 96% conversion in n-hexane in 12 h at 55ºC.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors:
S. Ravi
,
A. Deepa
,
B. Surekha
,
S. Susheela
,
P. Achuthan
,
S. Anil Kumar
,
K. Vijayan
,
U. Jambunathan
,
S. Munshi
, and
P. Dey

Abstract  

90Sr estimation in reprocessed uranium was carried out by a series of solvent extraction and carrier precipitation techniques using strontium and lanthanum carriers. Fuming with HClO4 was used to remove 106Ru as RuO4. Three step solvent extraction with 50% tri-n-butyl phosphate in xylene in presence of small amounts of dibutyl phosphate and thenoyl trifluoro acetone was carried out to eliminate uranium, plutonium, thorium and protactinium impurities. Lanthanum oxalate precipitation in acid medium was employed to scavenge the remaining multivalent ions. Strontium was precipitated as strontium oxalate in alkaline pH and 137 Cs was removed by washing the precipitate with water. A strontium recovery well above 70% was obtained. Final estimation was carried out by radiometry using end window GM counter after drying the precipitate under an infra red lamp. The same procedure was extended to the estimation of 90Sr in a diluted sample of the actual spent fuel solution. An additional lanthanum oxalate precipitation step was required to remove the entire 144Ce impurity from this sample. This modified procedure was employed in the determination of 90Sr in a number of reprocessed uranium samples and the over all precision of the method was found to be well within ±10%. An additional barium chromate precipitation step was necessary for the analysis of reprocessed uranium samples from high bumup fuels to eliminate trace amounts of short lived 224Ra produced during the decay of 232U and its daughters as they interfere in the estimation of 90Sr.

Restricted access