Search Results
You are looking at 101 - 110 of 190 items for
- Author or Editor: X. Wang x
- Refine by Access: All Content x
Physiological male sterility induced by the chemical hybridizing agent (CHA) overcomes problems of maintenance of sterile lines and restorers. However, the mechanism of sterility is unclear. The process of tapetum of CHA-treated ‘Xi’nong 2611’ at uninucleate, binucleate and trinucleate were compared with control to determine if tapetum varying differently during developmental stages. Tapetal degradation in CHA-treated ‘Xi’nong 2611’ began at late uninucleate stage, somewhat earlier than control plants. Cytological observations indicated that the gradual degradation of the tapetum in CHA-treated ‘Xi’nong 2611’ was initiated and terminated earlier than in the control. These findings implied that CHA-induced male sterility was related to abnormally early tapetal degradation. In order to indicate the role of the SKP1 gene in fertility/sterility in wheat, its expression was assessed in anthers at uninucleate, binucleate and trinucleate stages. SKP1 expression was reduced in the later developmental stages, and there was an obvious decrease from the uninucleate to trinucleate stages. Higher expression of the SKP1 gene occurred in ‘Xi’nong 2611’ compared to CHA-treated ‘Xi’nong 2611’. This implied that SKP1 gene expression was inhibited during the fertility transformation process and was related to transformation from fertility to sterility. Moreover, the results from this study suggest that SKP1 plays an essential role of conducting fertility in physiological male sterility.
Grain yield (GY) and yield components (YC) were investigated using two F8: 9 RILs, comprising 229 and 485 lines, respectively. A conditional analysis was conducted to generate conditional values for GY independent of each YC. Then both unconditional and conditional values were analyzed to map QTLs with additive effect. In both RILs, up to 23 unconditional and conditional QTLs were detected. However, only two QTLs were identified repeatedly among environments. All QTLs, except for 4 detected in unconditional mapping, were also identified as conditional QTLs, whereas a number of QTLs were additionally detected in conditional mapping. The number of QTLs detected that affected GY was different with respect to component-special influences. Our results revealed that the contributions of YC influencing QTL expression related to GY differed.
The mechanism of the fact that Mn deficiency damages the photosynthesis of plants is not yet fully understood. The main aim of the study was to determine Mn deficiency effects in photophosphorylation and key enzymes of CO 2 assimilation of maize. Maize plants were cultivated in Hoagland’s solution. They were subjected to Mn deficiency and to Mn administered in the Mn-deficient Hoagland’s media. The results showed that Mn deficiency was found to cause extensive declines in plant weight and chlorophyll a content, electron transport and oxygen-evolving rate, photophosphorylation rate, activities of Mg 2+ -ATPase, Ca 2+ -ATPase, Rubisco and Rubisco activase, and mRNA expressions of Rubisco and Rubisco activase of maize, but it only slightly affected chlorophyll b and carotenoid formation. However, Mn addition decreased the inhibition of the photosynthesis in maize caused by Mn deficiency.
Waxy wheat (Triticum aestivum L.) is grown throughout the world for its specific quality. Fertilization and planting density are two crucial factors that affect waxy wheat yield and photosynthetic capacity. The objectives of the research were to determine the effects of fertilization and planting density on photosynthetic characteristics, yield, and yield components of waxy wheat, including Yield, SSR, TGW, GNPP, GWPP, PH, HI, Pn, Gs, Ci, E and WUE using the method of field experiment, in which there were three levels (150, 300, and 450 kg ha−1) of fertilizer application rate and three levels (1.35, 1.8, and 2.25 × 106 plants ha−1) of planting density. The results suggested that photosynthetic characteristics, yield, and yield components had close relationship with fertilization levels and planting density. Under the same plant density, with the increase of fertilization, Yield, SSR, TGW, GNPP, GWPP, HI, Pn, Gs, E and WUE increased and then decreased, PH increased, but Ci decreased. Under the same fertilization, with the increase of plant density, Yield, SSR, TGW, GNPP, GWPP, HI increased and then decreased, PH, Pn, Gs and E increased, PH and WUE declined. The results also showed that F2 (300 kg ha−1) and D2 (1.8 × 106 plants ha−1) was a better match in this experiment, which could obtain a higher grain yield 4961.61 kg ha−1. Consequently, this combination of fertilizer application rate and plant densities are useful to get high yield of waxy wheat.
The waxy wheat shows special starch quality due to high amylopectin content. However, little information is available concerning the development and degradation of amyloplast from waxy wheat endosperm. To address this problem, waxy wheat variety, Yangnuo 1, and a non-waxy wheat variety, Yangmai 13, were chosen to investigate the development and degradation of endosperm amyloplast during wheat caryopsis development and germination stage respectively using histochemical staining and light microscopy. Changes of morphology, the soluble sugar and total starch content were indistinguishable in the process of caryopsis development of two wheat varieties. The developing endosperm of non-waxy was stained blue-black by I2-KI while the endosperm of waxy wheat was stained reddish-brown, but the pericarp of waxy and non-waxy wheat was stained blue-black. In contrast to nonwaxy wheat, endosperm amyloplast of waxy wheat had better development status and higher proportion of small amyloplast. During seed germination many small dissolution pores appeared on the surface of endosperm amyloplast and the pores became bigger and deeper until amyloplast disintegrated. The rate of degradation of waxy wheat endosperm amyloplast was faster than non-waxy wheat. Our results may also be helpful to the use of waxy starch in food and nonfood industry.
Abstract
The migration of 99Tc in a weak loess aquifer was investigated in-situ with undisturbed aquifer medium columns. The columns were obtained horizontally at a depth of 3236 m in an Underground Research Facility (URF). Quartz containing 3H (HTO) and 99Tc (in the form of 99TcO4 -) was introduced into one end of the columns and the columns were covered tightly. Aquifer water was introduced into the columns directly from an experimental shaft in the UFR. Effluents from the columns were collected and the activity of 3H and 99Tc were determined with a liquid scintillation analyzer. The breakthrough curves of 3H and 99Tc indicate that 99Tc migrates a little faster than that 3H does in the aquifer.
A recombinant inbred line (RIL) population with 302 lines derived from a cross of Weimai 8 × Luohan 2 was used to identify the quantitative trait loci (QTL) for plant height (PH) in wheat (Triticum aestivum L.). Possible genetic relationships between PH and PH components (PHC), including spike length (SL) and internode length from the first to the fourth node counted from the top, abbreviated as FIITL, SITL, TITL and FOITL, respectively, were evaluated at the QTL level. A QTL for PH was mapped using data on PH and on PH conditioned by PHC using the IciMapping V3.0 software. Conditional QTL mapping proved that, at the QTL level, SL contributed the least to PH, followed by FIITL and FOITL, while TITL had the strongest influence on PH, followed by SITL. These results indicate that the conditional QTL mapping method can be used to evaluate possible genetic relationships between PH and PHC, and that it can efficiently and precisely reveal counteracting QTL, which will enhance our understanding of the genetic basis of PH in wheat.
Elsholtzia densa Benth. var. densa (Lamiaceae) is a famous medicinal herb which has been widely used for treatment of colds, headaches, pharyngitis, fever, diarrhea, digestion disorder, rheumatic arthritis, nephritises, and nyctalopia in China. In this study, fraction of the ethyl alcohol extract of E. densa (aerial part) by different polarity solvents indicated that the ethyl acetate soluble fraction exhibited a potent 1,1-diphenyl-2-picryhydrazyl (DPPH) radical scavenging activity with the IC50 value of 148.2 μg/mL. Under the target guidance of DPPH experiment, isoquercitrin, trachelogenin, ethyl caffeate, and arctigenin were separated with purities 95.98%, 92.98%, 96.07%, and 88.83%, respectively, by a dual-mode high-speed counter-current chromatography (HSCCC) method using n-hexane–ethyl acetate–methanol–water (4.5:5:3:4, v/v/v/v) as the solvent system. In order to evaluate the scientific basis, antioxidant activity of four isolated compounds was assessed by the radical scavenging effect on DPPH radical; isoquercitrin and ethyl caffeate showed stronger antioxidant activities with IC50 values of 9.4 μg/mL and 9.2 μg/mL, respectively, while trachelogenin and arctigenin showed weak antioxidant activities with IC50 values of >500 μg/mL and 72.8 μg/mL, respectively. Results of the present study indicated that the combinative method using DPPH antioxidant assay and dual-mode HSCCC could be widely applied for rapid screening and isolating of antioxidants from complex traditional Chinese medicine extract.
Abstract
The migration of 99Tc in unsaturated Chinese loess was investigated in-situ with a tracer method. Quartz containing 3H (HTO) and 99Tc (99TcO4 -) was introduced into the bottom of an experimental pit which was then backfilled at the field test site. Then core soil samples were taken and cut vertically into 1 cm long slices. The slice samples were analyzed by liquid scintillation techniques in the laboratory. The results indicate that the migration pattern of 99Tc was quite similar to that of 3H and the vertical diffusion coefficients of 99Tc and 3H were calculated as (4.7±0.4).10-2 cm2/d and (7.8±0.4).10-2 cm2/d, respectively.
Abstract
The stability constants for tracer concentrations of Co(II) complexes with both the red earth humic and fulvic acids were determined at pH 5.9 and ionic strength 0.010 mol/l by using theArdakani-Stevenson cation exchange equilibrium method and the radiotracer60Co. It was found that the 1:1 complexes of Co(II) with the red earth humic and fulvic acids were formed and that the average values of logβ (stability constant) of humic and fulvic acid complexes were 5.76±0.19 and 4.42±0.03, respectively.