Search Results
You are looking at 101 - 110 of 139 items for
- Author or Editor: Y. Chen x
- Refine by Access: All Content x
Purple pericarp is an interesting and useful trait in Triticum aestivum, but the molecular mechanism behind this phenotype remains unclear. The allelic variation in the MYB transcriptors is associated with the phenotype of pigmented organs in many plants. In this study, a MYB transcription factor gene, TaMYB3, was isolated using homology-based cloning and a differentially expressed gene mining approach, to verify the function of the MYB transcriptor in the purple pericarp. The coding sequence of TaMYB3 in cultivar Gy115 was the same as that in cultivar Opata. TaMYB3 was localized to FL0.62–0.95 on chromosome 4BL. The TaMYB3 protein contains DNA-binding and transcription-activation domains, and clustered on a phylogenetic tree with the MYB proteins that regulates anthocyanin and proanthocyanin biosynthesis. TaMYB3 localized in the nuclei of Arabidopsis thaliana and wheat protoplasts after it was transiently expressed with PEG transformation. TaMYB3 induced anthocyanin synthesis in the pericarp cells of Opata in the dark in collaboration with the basic helix–loop–helix protein ZmR, which is also the function of ZmC1. However, TaMYB3 alone did not induce anthocyanin biosynthesis in the pericarp cells of the white grain wheat cultivar Opata in the light after bombardment, whereas the single protein ZmR did. Light increased the expression of TaMYB3 in the pericarp of Gy115 and Opata, but only induced anthocyanin biosynthesis in the grains of Gy115. Our results extend our understanding of the molecular mechanism of the purple pericarp trait in T. aestivum.
Abstract
The activity and structural variation of glycogen phosphorylase (GP) at different phosphorylation levels during incubation at 4 °C were explored in this study. The GP was assigned into four treatments to obtain high/low phosphorylation levels, which were (1) treated with glycogen phosphorylase kinase (Phk) to obtain high phosphorylation level, (2) treated with protein kinase A to obtain high phosphorylation level, (3) treated with alkaline phosphatase to obtain low phosphorylation level, and (4) control. Compared with the control group, the content of α-helix and β-sheet increased and the secondary structure of GP changed from disorder to order after phosphorylation. The activity of GP was increased and its structure was more tightly in the Phk group than that in the control group. The phosphorylation at Ser277, Ser430, Ser809, Thr304, Tyr298, and Tyr525 resulted in tighter spatial structure. In conclusion, phosphorylation of GP enhanced its catalytic activity by making the secondary and spatial structure more orderly, which is of great significance for controlling meat quality by regulating glycolysis.
Summary
A highly sensitive and reproducible isocratic liquid chromatographic method has been developed for the analysis of artemisinin and its three commonly used derivatives (artesunate, dihydroartemisinin, and artemether). The method involves a precolumn derivatization reaction with 4-carboxyl-2,6-dinitrobenzene diazonium ion to produce azo adducts that are UV-active. The critical parameters for the derivatization such as temperature, reaction time, and reagent concentrations were studied and optimized. The chromatographic separations were carried out on a C-18 column with mobile phase consisting of acetonitrile-0.1% acetic acid (60:40) at a flow rate of 1 mL min−1. UV detection was set at 254 nm. Dynamic linear calibration range was obtained at concentrations of artemisinins ranging from 0.26 to 1.44 μg mL−1. The low limits of detections of artemisinin, artesunate, dihydroartemisinin, and artemether were found to be 0.091, 0.0125, 0.0489, and 0.0128 ng μL−1, respectively. The developed methods were precise (RSD <3%) and accurate (% error < 5%). The developed methods may find application in dosage form analysis and pharmacokinetic studies.
Abstract
This paper provides a rapid method coupled with chemometrics to visualise PEL quality of eight regions. The contents of mineral elements, Vitamin C (Vc), and colour parameters were measured using spectrophotometric methods. The volatile substances were determined by electronic nose (E-nose) and headspace solid phase micro-extraction with gas chromatography-mass spectrometry (HS-SPME/GC-MS). Chemometric analyses were employed to visualise the sample distribution according to the geographical origin. The colour parameters, Vc, and mineral contents of PEL from diverse origins were significantly different (P < 0.05). A total of 25 volatile organic compounds (VOCs) were identified from PELs, with the highest percentage of components being ethyl acetate. The combination of HS-SPME/GC-MS and E-nose can properly characterise PEL samples. Therefore, the results of this exploratory work highlight the possibility of discriminating PEL from different regions.
Abstract
The dynamic adsorption of Kr and Xe in activated charcoal were measured. The temperature dependence of breakthrough curves for individual isotopes of85mKr,87Kr,88Kr and135Xe have been determined from the -spectra at temperatures from 78 K to 291 K. The effective hold up and dynamic adsorption coefficient have been deduced. We find that adsorption is very sensitive to temperature and also depends on the size rather than on the mass of the adsorbed atom. Form total growth radioactivity, the time dependent brakthrough curves at the temperatures of 113, 195 and 220 K have been constructed. The curves were analyzed and compared with the model calculations. Fick's law describing the mass transfer of gas into porous solid was employed to obtain the adsorption coefficient from fitting the experimental data. The results show fairly good agreement between model predictions and the experiments.
Abstract
The decomposition process of barium, cerium and neodymium oxalates in air was investigated by DTA-TG. Decomposition of an oxalate coprecipitate precursor and formation of barium cerate were examined in air, N2 and CO2 atmospheres, respectively, by employing DTA-TG and XRD. The results showed that, in air, cerium oxalate could easily be decomposed to CeO2 below 350°C and Nd2O3 could be obtained at 670°C, while a high temperature of >1400°C was needed to obtain BaO. Although some amount of BaCeO3 was formed at 500°C in air, at 650°C in N2 and at 800°C in CO2, single perovskite phase of BaCeO3 could only be obtained at a much higher temperature.
Abstract
The thermal decomposition of Zn[NFA]2 5H2O (NFA=C16H18FN3O3, norfloxacin) and its kinetics were studied under non-isothermal conditions in air by TG-DTG and DTA methods. The intermediate and residue for each decomposition were identified from the TG curve. The non-isothermal kinetic data were analyzed by means of the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method. The possible reaction mechanisms were investigated by comparing the kinetic parameters. The kinetic equation for the second stage can be expressed as d/dt=Aexp(–E/RT)(1–).
Abstract
The minimum oxygen concentration (MOC) is an important safety parameter of safety for fire/explosion prevention of practical processes with fuel-air-inert mixtures. In this study, the critical fire and explosion properties stand for the explosion sensitivity (lower explosion limit (LEL), upper explosion limit (UEL)), explosion maximum indices (maximum explosion pressure (P max), maximum rate of explosion pressure rise (dP dt −1)max) and explosion damage degree (gas or vapor deflagration index (K g)/St Class). These imperative parameters of various toluene/methanol mixing solvents (100/0, 75/25, 50/50, 25/75 and 0/100 vol.%) were experimentally determined within a closed spherical vessel of 20 L (20-L-Apparatus) at 101 kPa and 150 °C. Particularly, we discussed the variations both on the above characteristics and implied flammability hazard degree within different initial oxygen circumstances; the specific effects on toluene/methanol mixing solvents were to be clarified accompanied with reducing loading oxygen concentrations, gradually approaching up to the MOC in this present work. Finally, a triangle flammability diagram with the five toluene/methanol components in our testing arrangements and conditions was established for graphically indicating the dangerous fire/explosion hazard region. It has been confirmed that this study would be very useful in relevant industrial processes for a proactive loss prevention program. The experimentally derived outcomes are recommended for the inherently safer design (ISD) for forestalling any accidents from fires and explosions.
Abstract
Four ethylenediamine-N,N,N′,N′-tetraacetate complexes with Sb(III)-M-Sb(III) polynuclear structure (M=Co(II), La(III), Nd(III), Dy(III)) are synthesized. [Sb2-μ4-(EDTA)2Co(H2O)2]·5.15H2O is characterized by single crystal X-ray diffraction. The crystal structure of [Sb2-μ4-(EDTA)2Co(H2O)2]·5.15H2O belongs to monoclinic system, space group P21/n, lattice parameters: a=6.9969(2), b=20.8705(4), c=10.8106(2) Å, β=90.031(1)°, V=1578.66(6) Å3, Z=2, M r=1007.76, D c=2.120 g cm−3, F(000)=1001, μ=2.323 mm−1, the final R=0.0235 and wR=0.0629 for 3480 observed reflections (I>2σ(I)). The powder X-ray diffraction patterns of the complexes are also measured. Elemental analyses, FTIR spectra, TG-DSC and DTA of [Sb2(EDTA)2Ln]NO3·nH2O are performed. FTIR spectra reveal that the antimony and other metallic ions were connected through the carboxylate bridges. The thermal analysis can demonstrate the complex formation of the antimony, other metallic ions and EDTA. The possible pyrolysis reactions in the thermal decomposition process of the complexes, the experimental and calculated percentage mass losses are also given.
Abstract
Research on extracted 90Y with di(2-ethylhexyl) orthophosphoric acid (P204) in lipiodol for liver cancer was made to evaluate the stability of extracted 90Y with P204 in lipiodol (90Y-P204-lipiodol) in serum of newly-born cattle and human’s blood. At first, P204 (extractant) was dissolved in lipiodol (organic phase). Secondly, 90Y was extracted to organic phase after adding 90Y solution into test tube with P204 and lipiodol in it. The extracting efficiency with 0.01 mol/l P204 could reach 99.4%. The stability of 90Y-P204-lipiodol has been experimented in physiological saline solution as preparation for further stability experiment. The result indicated that the extracted 90Y lost 0.02%–0.36% in physiological saline solution. The results of further stability experiment showed that loss efficiencies of extracted 90Y after adding newly-born cattle serum 1 hour, 1 day, 3 and 7 days are 3.38%, 3.12%, 4.29% and 6.62%, respectively, and loss efficiencies of extracted 90Y after adding human’s blood 1 hour, 1 day, 3 and 7 days are 2.55%, 5.91%, 7.88% and 5.63%, respectively. Our data also indicated that 90Y is the most possible radioisotope for being extracted with P204 in lipiodol to treat hepatocellular carcinoma, particularly in cases of unresectable liver tumors, since 90Y is available from several commercial sources in clinical quality. We conclude that the stability of 90Y-P204-lipiodol tested with newly-born cattle serum and human’s blood attained great results. 90Y-P204-lipiodol is a kind of potential and exciting pharmaceutical in inerventional therapy for liver cancer and we can carry on the further animal test and clinical trial.